康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

A **topological game** is an infinite game of perfect information played between two players on a topological space. Players choose objects with topological properties such as points, open sets, closed sets and open coverings. Time is generally discrete, but the plays may have transfinite lengths, and extensions to continuum time have been put forth. The conditions for a player to win can involve notions like topological closure and convergence.

It turns out that some fundamental topological constructions have a natural counterpart in topological games; examples of these are the Baire property, Baire spaces, completeness and convergence properties, separation properties, covering and base properties, continuous images, Suslin sets, and singular spaces. At the same time, some topological properties that arise naturally in topological games can be generalized beyond a game-theoretic context: by virtue of this duality, topological games have been widely used to describe new properties of topological spaces, and to put known properties under a different light. There are also close links with selection principles.

The term *topological game* was first introduced by Claude Berge,^{[1]}^{[2]}^{[3]}
who defined the basic ideas and formalism in analogy with topological groups. A different meaning for *topological game*, the concept of “topological properties defined by games”, was introduced in the paper of Rastislav Telgársky,^{[4]}
and later "spaces defined by topological games";^{[5]}
this approach is based on analogies with matrix games, differential games and statistical games, and defines and studies topological games within topology. After more than 35 years, the term “topological game” became widespread, and appeared in several hundreds of publications. The survey paper of Telgársky^{[6]}
emphasizes the origin of topological games from the Banach–Mazur game.

There are two other meanings of topological games, but these are used less frequently.

- The term
*topological game*introduced by Leon Petrosjan^{[7]}in the study of antagonistic pursuit-evasion games. The trajectories in these topological games are continuous in time. - The games of Nash (the Hex games), the Milnor games (Y games), the Shapley games (projective plane games), and Gale's games (Bridg-It games) were called
*topological games*by David Gale in his invited address [1979/80]. The number of moves in these games is always finite. The discovery or rediscovery of these topological games goes back to years 1948–49.

Many frameworks can be defined for infinite positional games of perfect information.

The typical setup is a game between two players, **I** and **II**, who alternately pick subsets of a topological space *X*. In the *n*th round, player **I** plays a subset *I*_{n} of *X*, and player II responds with a subset *J*_{n}. There is a round for every natural number *n*, and after all rounds are played, player **I** wins if the sequence

*I*_{0},*J*_{0},*I*_{1},*J*_{1},...

satisfies some property, and otherwise player **II** wins.

The game is defined by the target property and the allowed moves at each step. For example, in the Banach–Mazur game *BM*(*X*), the allowed moves are nonempty open subsets of the previous move, and player **I** wins if .

This typical setup can be modified in various ways. For example, instead of being a subset of *X*, each move might consist of a pair where and . Alternatively, the sequence of moves might have length some ordinal number other than ω_{1}.

- A
*play*of the game is a sequence of legal moves

*I*_{0},*J*_{0},*I*_{1},*J*_{1},...

- The
*result of a play*is either a win or a loss for each player.

- A
*strategy*for player**P**is a function defined over every legal finite sequence of moves of**P'**s opponent. For example, a strategy for player**I**is a function*s*from sequences (*J*_{0},*J*_{1}, ...,*J*_{n}) to subsets of*X*. A game is said to be played*according to strategy s*if every player**P**move is the value of*s*on the sequence of their opponent's prior moves. So if*s*is a strategy for player**I**, the play

- is
*according to strategy s*. (Here λ denotes the empty sequence of moves.)

- A strategy for player
**P**is said to be*winning*if for every play according to strategy*s*results in a win for player**P**, for any sequence of legal moves by**P'**s opponent. If player**P**has a winning strategy for game*G*, this is denoted . If either player has a winning strategy for*G*, then*G*is said to be*determined.*It follows from the axiom of choice that there are non-determined topological games. - A strategy for
**P**is*stationary*if it depends only on the last move by**P'**s opponent; a strategy isif it depends both on the last move of the opponent**Markov***and*on the ordinal number of the move.

The first topological game studied was the Banach–Mazur game, which is a motivating example of the connections between game-theoretic notions and topological properties.

Let *Y* be a topological space, and let *X* be a subset of *Y*, called the *winning set*. Player **I** begins the game by picking a nonempty open subset , and player **II** responds with a nonempty open subset . Play continues in this fashion, with players alternately picking a nonempty open subset of the previous play. After an infinite sequence of moves, one for each natural number, the game is finished, and **I** wins if and only if

The game-theoretic and topological connections demonstrated by the game include:

**II**has a winning strategy in the game if and only if*X*is of the*first category*in*Y*(a set is of the first category or meagre if it is the countable union of nowhere-dense sets).- If
*Y*is a complete metric space, then**I**has a winning strategy if and only if*X*is comeagre in some nonempty open subset of*Y*. - If
*X*has the Property of Baire in*Y*, then the game is determined.

Some other notable topological games are:

- the binary game introduced by Ulam — a modification of the Banach–Mazur game;
- the Banach game — played on a subset of the real line;
- the Choquet game — related to siftable spaces;
- the point-open game — in which player
**I**chooses points and player**II**chooses open neighborhoods of them.

Many more games have been introduced over the years, to study, among others: the Kuratowski coreduction principle; separation and reduction properties of sets in close projective classes; Luzin sieves; invariant descriptive set theory; Suslin sets; the closed graph theorem; webbed spaces; MP-spaces; the axiom of choice; recursive functions. Topological games have also been related to ideas in mathematical logic, model theory, infinitely-long formulas, infinite strings of alternating quantifiers, ultrafilters, partially ordered sets, and the coloring number of infinite graphs.

For a longer list and a more detailed account see the 1987 survey paper of Telgársky.^{[6]}

- ↑ C. Berge, Topological games with perfect information. Contributions to the theory of games, vol. 3, 165–178. Annals of Mathematics Studies, no. 39. Princeton University Press, Princeton, N. J., 1957.
- ↑ C. Berge, Théorie des jeux à n personnes, Mém. des Sc. Mat., Gauthier-Villars, Paris 1957.
- ↑ A. R. Pears, On topological games, Proc. Cambridge Philos. Soc. 61 (1965), 165–171.
- ↑ R. Telgársky, On topological properties defined by games, Topics in Topology (Proc. Colloq. Keszthely 1972), Colloq. Math. Soc. János Bolyai, Vol. 8, North-Holland, Amsterdam 1974, 617–624.
- ↑ R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193–223.
- 1 2 R. Telgársky, "Topological Games: On the 50th Anniversary of the Banach-Mazur Game", Rocky Mountain J. Math. 17 (1987), 227–276.
- ↑ L. A. Petrosjan, Topological games and their applications to pursuit problems. I. SIAM J. Control 10 (1972), 194–202.

© 2019 raptorfind.com. Imprint, All rights reserved.