This is a video about (170705) 주간 아이돌 310회 블랙핑크 (BLACKPINK) - Weekly idol ep 310 BLACKPINK

主要支援：已於2009年4月8日到期 延伸支援：已於2014年4月8日到期（仅限Service Pack 3 x86（SP3 x86）及Service Pack 2 x64（SP2 x64）） 新增的功能 移除的功能 版本 开发历史 批評 主题 Windows XP（开发代号：）是微软公司推出供个人电脑使用的操作系统，包括商用及家用的桌上型电脑、笔记本电脑、媒体中心（英语：）和平板电脑等。其RTM版于2001年8月24日发布；零售版于2001年10月25日上市。其名字「」的意思是英文中的「体验」（）。Windows ..

Nov 13, 2019- Explore dobdan222's board "교복", followed by 405 people on Pinterest. See more ideas about Asian girl, Korean student and Fashion.

Nov 10, 2019- Explore cutebear36088's board "여고딩", followed by 557 people on Pinterest. See more ideas about School looks, Fashion and School uniform.

Republika obeh narodov Habsburška monarhija Bavarska Saška Franconia Švabska Zaporoški kozaki Velika vojvodina Toskana Drugo obleganje Dunaja je potekalo leta 1683; pričelo se je 14. julija 1683, ko je Osmanski imperij obkolil Dunaj in končalo 11. septembra ..

Robert Henry Goldsborough (January 4, 1779 – October 5, 1836) was an American politician from Talbot County, Maryland. Goldsborough was born at "Myrtle Grove" near Easton, Maryland. He was educated by private tutors and graduated from St. John's College in ..

Anabolic steroids, also known more properly as anabolic–androgenic steroids (AAS), are steroidal androgens that include natural androgens like testosterone as well as synthetic androgens that are structurally related and have similar effects to testosterone. ..

In combinatorial game theory, the **strategy-stealing argument** is a general argument that shows, for many two-player games, that the second player cannot have a guaranteed winning strategy. The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage.

The argument works by obtaining a contradiction. A winning strategy is assumed to exist for the second player, who is using it. But then, roughly speaking, after making their first move – which by the conditions above is not a disadvantage – the first player may then also play according to this winning strategy. The result is that both players are guaranteed to win – which is absurd, thus contradicting the assumption that such a strategy exists.

Strategy-stealing was invented by John Nash in the 1940s to show that the game of hex is always a first-player win, as ties are not possible in this game.^{[1]} However, Nash did not publish this method, and Beck (2008) credits its first publication to Alfred W. Hales and Robert I. Jewett, in the 1963 paper on tic-tac-toe in which they also proved the Hales–Jewett theorem.^{[2]} Other examples of games to which the argument applies include the *m*,*n*,*k*-games such as gomoku. In the game of Sylver coinage, strategy stealing has been used to show that the first player wins, rather than that the game ends in a tie.^{[3]}

A strategy-stealing argument can be used on the example of the game of tic-tac-toe, for a board and winning rows of any size.^{[1]}^{[2]} Suppose that the second player is using a strategy, *S*, which guarantees them a win. The first player places an **X** in an arbitrary position, and the second player then responds by placing an **O** according to *S*. But if they ignore the first random **X** that they placed, the first player finds themselves in the same situation that the second player faced on their first move; a single enemy piece on the board. The first player may therefore make their moves according to *S* – that is, unless *S* calls for another **X** to be placed where the ignored **X** is already placed. But in this case, the player may simply place his **X** in some other random position on the board, the net effect of which will be that one **X** is in the position demanded by *S*, while another is in a random position, and becomes the new ignored piece, leaving the situation as before. Continuing in this way, *S* is, by hypothesis, guaranteed to produce a winning position (with an additional ignored **X** of no consequence). But then the second player has lost – contradicting the supposition that they had a guaranteed winning strategy. Such a winning strategy for the second player, therefore, does not exist, and tic-tac-toe is either a forced win for the first player or a tie. Further analysis shows it is in fact a tie.

The same proof holds for any strong positional game.

Philidor, 1777

a | b | c | d | e | f | g | h | ||

8 | 8 | ||||||||

7 | 7 | ||||||||

6 | 6 | ||||||||

5 | 5 | ||||||||

4 | 4 | ||||||||

3 | 3 | ||||||||

2 | 2 | ||||||||

1 | 1 | ||||||||

a | b | c | d | e | f | g | h |

There is a class of chess positions called Zugzwang in which the player obligated to move would prefer to "pass" if this were allowed. Because of this, the strategy-stealing argument cannot be applied to chess.^{[4]} It is not currently known whether White or Black can force a win with optimal play, or if both players can force a draw. However, virtually all students of chess consider White's first move to be an advantage and statistics from modern high-level games have White's winning percentage about 10% higher than Black's.

In Go passing is allowed. When the starting position is symmetrical (empty board, neither player has any points), this means that the first player could steal the second player's winning strategy simply by giving up the first move. Since the 1930s, however,^{[5]} the second player is typically awarded some compensation points, which makes the starting position asymmetrical, and the strategy-stealing argument will no longer work.

An elementary strategy in the game is "mirror go", where the second player performs moves which are diagonally opposite those of this opponent. This approach may be defeated using ladder tactics, ko fights, or successfully competing for control of the board's central point.

The strategy-stealing argument shows that the second player cannot win, by means of deriving a contradiction from any hypothetical winning strategy for the second player. The argument is commonly employed in games where there can be no draw, by means of the law of the excluded middle. However, it does not provide an explicit strategy for the first player, and because of this it has been called non-constructive.^{[4]} This raises the question of how to actually compute a winning strategy.

For games with a finite number of reachable positions, such as chomp, a winning strategy can be found by exhaustive search.^{[6]} However, this might be impractical if the number of positions is large.

In 2019, Greg Bodwin and Ofer Grossman proved that the problem of finding a winning strategy is PSPACE-hard in two kinds of games in which strategy-stealing arguments were used: the minimum poset game and the symmetric Maker-Maker game.^{[7]}

- 1 2 Beck, József (2008),
*Combinatorial Games: Tic-Tac-Toe Theory*, Encyclopedia of Mathematics and its Applications,**114**, Cambridge: Cambridge University Press, p.65, 74, doi:10.1017/CBO9780511735202, ISBN 9780511735202, MR 2402857. - 1 2 Hales, A. W.; Jewett, R. I. (1963), "Regularity and positional games",
*Transactions of the American Mathematical Society*,**106**(2): 222–229, doi:10.2307/1993764, JSTOR 1993764, MR 0143712. - ↑ Sicherman, George (2002), "Theory and Practice of Sylver Coinage" (PDF),
*Integers*,**2**, G2 - 1 2 Bishop, J. M.; Nasuto, S. J.; Tanay, T.; Roesch, E. B.; Spencer, M. C. (2016), "HeX and the single anthill: Playing games with Aunt Hillary", in Müller, Vincent C. (ed.),
*Fundamental Issues of Artificial Intelligence*(PDF), Synthese Library,**376**, Springer, pp. 369–390, doi:10.1007/978-3-319-26485-1_22. See in particular Section 22.2.2.2, The Strategy-Stealing Argument, p. 376. - ↑ Fairbairn, John,
*History of Komi*, retrieved 2010-04-09 - ↑ rjlipton (2013-10-02). "Stealing Strategies".
*Gödel's Lost Letter and P=NP*. Retrieved 2019-11-30. - ↑ Bodwin, Greg; Grossman, Ofer (2019-11-15). "Strategy-Stealing is Non-Constructive". arXiv:1911.06907 [cs.DS].

© 2019 raptorfind.com. Imprint, All rights reserved.