康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

In combinatorial game theory, the **strategy-stealing argument** is a general argument that shows, for many two-player games, that the second player cannot have a guaranteed winning strategy. The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage.

The argument works by obtaining a contradiction. A winning strategy is assumed to exist for the second player, who is using it. But then, roughly speaking, after making their first move – which by the conditions above is not a disadvantage – the first player may then also play according to this winning strategy. The result is that both players are guaranteed to win – which is absurd, thus contradicting the assumption that such a strategy exists.

Strategy-stealing was invented by John Nash in the 1940s to show that the game of hex is always a first-player win, as ties are not possible in this game.^{[1]} However, Nash did not publish this method, and Beck (2008) credits its first publication to Alfred W. Hales and Robert I. Jewett, in the 1963 paper on tic-tac-toe in which they also proved the Hales–Jewett theorem.^{[2]} Other examples of games to which the argument applies include the *m*,*n*,*k*-games such as gomoku. In the game of Sylver coinage, strategy stealing has been used to show that the first player wins, rather than that the game ends in a tie.^{[3]}

A strategy-stealing argument can be used on the example of the game of tic-tac-toe, for a board and winning rows of any size.^{[1]}^{[2]} Suppose that the second player is using a strategy, *S*, which guarantees them a win. The first player places an **X** in an arbitrary position, and the second player then responds by placing an **O** according to *S*. But if they ignore the first random **X** that they placed, the first player finds themselves in the same situation that the second player faced on their first move; a single enemy piece on the board. The first player may therefore make their moves according to *S* – that is, unless *S* calls for another **X** to be placed where the ignored **X** is already placed. But in this case, the player may simply place his **X** in some other random position on the board, the net effect of which will be that one **X** is in the position demanded by *S*, while another is in a random position, and becomes the new ignored piece, leaving the situation as before. Continuing in this way, *S* is, by hypothesis, guaranteed to produce a winning position (with an additional ignored **X** of no consequence). But then the second player has lost – contradicting the supposition that they had a guaranteed winning strategy. Such a winning strategy for the second player, therefore, does not exist, and tic-tac-toe is either a forced win for the first player or a tie. Further analysis shows it is in fact a tie.

The same proof holds for any strong positional game.

There is a class of chess positions called Zugzwang in which the player obligated to move would prefer to "pass" if this were allowed. Because of this, the strategy-stealing argument cannot be applied to chess.^{[4]} It is not currently known whether White or Black can force a win with optimal play, or if both players can force a draw. However, virtually all students of chess consider White's first move to be an advantage and statistics from modern high-level games have White's winning percentage about 10% higher than Black's.

In Go passing is allowed. When the starting position is symmetrical (empty board, neither player has any points), this means that the first player could steal the second player's winning strategy simply by giving up the first move. Since the 1930s, however,^{[5]} the second player is typically awarded some compensation points, which makes the starting position asymmetrical, and the strategy-stealing argument will no longer work.

An elementary strategy in the game is "mirror go", where the second player performs moves which are diagonally opposite those of this opponent. This approach may be defeated using ladder tactics, ko fights, or successfully competing for control of the board's central point.

The strategy-stealing argument shows that the second player cannot win, by means of deriving a contradiction from any hypothetical winning strategy for the second player. The argument is commonly employed in games where there can be no draw, by means of the law of the excluded middle. However, it does not provide an explicit strategy for the first player, and because of this it has been called non-constructive.^{[4]} This raises the question of how to actually compute a winning strategy.

For games with a finite number of reachable positions, such as chomp, a winning strategy can be found by exhaustive search.^{[6]} However, this might be impractical if the number of positions is large.

In 2019, Greg Bodwin and Ofer Grossman proved that the problem of finding a winning strategy is PSPACE-hard in two kinds of games in which strategy-stealing arguments were used: the minimum poset game and the symmetric Maker-Maker game.^{[7]}

The above usage of the word "constructive" does not match the definitions of constructive mathematics. According to the BHK interpretation, the most widely used basis for constructive interpretation of logical formulae, the fact that the second player has no winning strategy is constructive.^{[citation needed]}

For games where the appropriate instance of Markov's rule can be constructively established by means of bar induction, the non-constructive proof of a winning strategy for the first player can be converted into a winning strategy.^{[citation needed]}

- 1 2 Beck, József (2008),
*Combinatorial Games: Tic-Tac-Toe Theory*, Encyclopedia of Mathematics and its Applications,**114**, Cambridge: Cambridge University Press, p.65, 74, doi:10.1017/CBO9780511735202, ISBN 9780511735202, MR 2402857. - 1 2 Hales, A. W.; Jewett, R. I. (1963), "Regularity and positional games",
*Transactions of the American Mathematical Society*,**106**(2): 222–229, doi:10.2307/1993764, JSTOR 1993764, MR 0143712. - ↑ Sicherman, George (2002), "Theory and Practice of Sylver Coinage" (PDF),
*Integers*,**2**, G2 - 1 2 Bishop, J. M.; Nasuto, S. J.; Tanay, T.; Roesch, E. B.; Spencer, M. C. (2016), "HeX and the single anthill: Playing games with Aunt Hillary", in Müller, Vincent C. (ed.),
*Fundamental Issues of Artificial Intelligence*(PDF), Synthese Library,**376**, Springer, pp. 369–390, doi:10.1007/978-3-319-26485-1_22. See in particular Section 22.2.2.2, The Strategy-Stealing Argument, p. 376. - ↑ Fairbairn, John,
*History of Komi*, retrieved 2010-04-09 - ↑ rjlipton (2013-10-02). "Stealing Strategies".
*Gödel's Lost Letter and P=NP*. Retrieved 2019-11-30. - ↑ Bodwin, Greg; Grossman, Ofer (2019-11-15). "Strategy-Stealing is Non-Constructive". arXiv:1911.06907 [cs.DS].

© 2019 raptorfind.com. Imprint, All rights reserved.