This is a video about (170705) 주간 아이돌 310회 블랙핑크 (BLACKPINK)  Weekly idol ep 310 BLACKPINK
主要支援：已於2009年4月8日到期 延伸支援：已於2014年4月8日到期（仅限Service Pack 3 x86（SP3 x86）及Service Pack 2 x64（SP2 x64）） 新增的功能 移除的功能 版本 开发历史 批評 主题 Windows XP（开发代号：）是微软公司推出供个人电脑使用的操作系统，包括商用及家用的桌上型电脑、笔记本电脑、媒体中心（英语：）和平板电脑等。其RTM版于2001年8月24日发布；零售版于2001年10月25日上市。其名字「」的意思是英文中的「体验」（）。Windows ..
Nov 13, 2019 Explore dobdan222's board "교복", followed by 405 people on Pinterest. See more ideas about Asian girl, Korean student and Fashion.
Nov 10, 2019 Explore cutebear36088's board "여고딩", followed by 557 people on Pinterest. See more ideas about School looks, Fashion and School uniform.
Republika obeh narodov Habsburška monarhija Bavarska Saška Franconia Švabska Zaporoški kozaki Velika vojvodina Toskana Drugo obleganje Dunaja je potekalo leta 1683; pričelo se je 14. julija 1683, ko je Osmanski imperij obkolil Dunaj in končalo 11. septembra ..
Robert Henry Goldsborough (January 4, 1779 – October 5, 1836) was an American politician from Talbot County, Maryland. Goldsborough was born at "Myrtle Grove" near Easton, Maryland. He was educated by private tutors and graduated from St. John's College in ..
Anabolic steroids, also known more properly as anabolic–androgenic steroids (AAS), are steroidal androgens that include natural androgens like testosterone as well as synthetic androgens that are structurally related and have similar effects to testosterone. ..
Risk dominance Payoff dominance  

A solution concept in game theory  
Relationship  
Subset of  Nash equilibrium 
Significance  
Proposed by  John Harsanyi, Reinhard Selten 
Used for  Noncooperative games 
Example  Stag hunt 
Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.^{1} When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction (i.e. is less risky). This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.
The payoff matrix in Figure 1 provides a simple twoplayer, twostrategy example of a game with two pure Nash equilibria. The strategy pair (Hunt, Hunt) is payoff dominant since payoffs are higher for both players compared to the other pure NE, (Gather, Gather). On the other hand, (Gather, Gather) risk dominates (Hunt, Hunt) since if uncertainty exists about the other player's action, gathering will provide a higher expected payoff. The game in Figure 1 is a wellknown gametheoretic dilemma called stag hunt. The rationale behind it is that communal action (hunting) yields a higher return if all players combine their skills, but if it is unknown whether the other player helps in hunting, gathering might turn out to be the better individual strategy for food provision, since it does not depend on coordinating with the other player. In addition, gathering alone is preferred to gathering in competition with others. Like the Prisoner's dilemma, it provides a reason why collective action might fail in the absence of credible commitments.


The game given in Figure 2 is a coordination game if the following payoff inequalities hold for player 1 (rows): A > B, D > C, and for player 2 (columns): a > b, d > c. The strategy pairs (H, H) and (G, G) are then the only pure Nash equilibria. In addition there is a mixed Nash equilibrium where player 1 plays H with probability p = (dc)/(abc+d) and G with probability 1–p; player 2 plays H with probability q = (DC)/(ABC+D) and G with probability 1–q.
Strategy pair (H, H) payoff dominates (G, G) if A ≥ D, a ≥ d, and at least one of the two is a strict inequality: A > D or a > d.
Strategy pair (G, G) risk dominates (H, H) if the product of the deviation losses is highest for (G, G) (Harsanyi and Selten, 1988, Lemma 5.4.4). In other words, if the following inequality holds: (C – D)(c – d)≥(B – A)(b – a). If the inequality is strict then (G, G) strictly risk dominates (H, H).^{2}(That is, players have more incentive to deviate).
If the game is symmetric, so if A = a, B = b, etc., the inequality allows for a simple interpretation: We assume the players are unsure about which strategy the opponent will pick and assign probabilities for each strategy. If each player assigns probabilities ½ to H and G each, then (G, G) risk dominates (H, H) if the expected payoff from playing G exceeds the expected payoff from playing H: ½ B + ½ D ≥ ½ A + ½ C, or simply B + D ≥ A + C.
Another way to calculate the risk dominant equilibrium is to calculate the risk factor for all equilibria and to find the equilibrium with the smallest risk factor. To calculate the risk factor in our 2x2 game, consider the expected payoff to a player if they play H: (where p is the probability that the other player will play H), and compare it to the expected payoff if they play G: . The value of p which makes these two expected values equal is the risk factor for the equilibrium (H, H), with the risk factor for playing (G, G). You can also calculate the risk factor for playing (G, G) by doing the same calculation, but setting p as the probability the other player will play G. An interpretation for p is it is the smallest probability that the opponent must play that strategy such that the person's own payoff from copying the opponent's strategy is greater than if the other strategy was played.
A number of evolutionary approaches have established that when played in a large population, players might fail to play the payoff dominant equilibrium strategy and instead end up in the payoff dominated, risk dominant equilibrium. Two separate evolutionary models both support the idea that the risk dominant equilibrium is more likely to occur. The first model, based on replicator dynamics, predicts that a population is more likely to adopt the risk dominant equilibrium than the payoff dominant equilibrium. The second model, based on best response strategy revision and mutation, predicts that the risk dominant state is the only stochastically stable equilibrium. Both models assume that multiple twoplayer games are played in a population of N players. The players are matched randomly with opponents, with each player having equal likelihoods of drawing any of the N−1 other players. The players start with a pure strategy, G or H, and play this strategy against their opponent. In replicator dynamics, the population game is repeated in sequential generations where subpopulations change based on the success of their chosen strategies. In best response, players update their strategies to improve expected payoffs in the subsequent generations. The recognition of Kandori, Mailath & Rob (1993) and Young (1993) was that if the rule to update one's strategy allows for mutation^{4}, and the probability of mutation vanishes, i.e. asymptotically reaches zero over time, the likelihood that the risk dominant equilibrium is reached goes to one, even if it is payoff dominated.^{3}