康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

**Mertens stability** is a solution concept used to predict the outcome of a non-cooperative game. A tentative definition of stability was proposed by Elon Kohlberg and Jean-François Mertens^{[1]} for games with finite numbers of players and strategies. Later, Mertens^{[2]} proposed a stronger definition that was elaborated further by Srihari Govindan and Mertens.^{[3]} This solution concept is now called Mertens stability, or just stability.

Like other refinements of Nash equilibrium^{[4]}
used in game theory stability selects subsets of the set of Nash equilibria that have desirable properties. Stability invokes stronger criteria than other refinements, and thereby ensures that more desirable properties are satisfied.

Refinements have often been motivated by arguments for admissibility, backward induction, and forward induction. In a two-player game, an admissible decision rule for a player is one that does not use any strategy that is weakly dominated by another (see Strategic dominance). Backward induction posits that a player's optimal action in any event anticipates that his and others' subsequent actions are optimal. The refinement called subgame perfect equilibrium implements a weak version of backward induction, and increasingly stronger versions are sequential equilibrium, perfect equilibrium, quasi-perfect equilibrium, and proper equilibrium. Forward induction posits that a player's optimal action in any event presumes the optimality of others' past actions whenever that is consistent with his observations. Forward induction^{[5]} is satisfied by a sequential equilibrium for which a player's belief at an information set assigns probability only to others' optimal strategies that enable that information to be reached.

Kohlberg and Mertens emphasized further that a solution concept should satisfy the *invariance* principle that it not depend on which among the many equivalent representations of the strategic situation as an extensive-form game is used. Thus it should depend only on the reduced normal-form game obtained after elimination of pure strategies that are redundant because their payoffs for all players can be replicated by a mixture of other pure strategies. Mertens^{[6]}^{[7]} emphasized also the importance of the *small worlds* principle that a solution concept should depend only on the ordinal properties of players' preferences, and should not depend on whether the game includes extraneous players whose actions have no effect on the original players' feasible strategies and payoffs.

Kohlberg and Mertens demonstrated via examples that not all of these properties can be obtained from a solution concept that selects single Nash equilibria. Therefore, they proposed that a solution concept should select closed connected subsets of the set of Nash equilibria.^{[8]}

- Admissibility and Perfection: Each equilibrium in a stable set is perfect, and therefore admissible.
- Backward Induction and Forward Induction: A stable set includes a proper equilibrium of the normal form of the game that induces a quasi-perfect and therefore a sequential equilibrium in every extensive-form game with perfect recall that has the same normal form. A subset of a stable set survives iterative elimination of weakly dominated strategies and strategies that are inferior replies at every equilibrium in the set.
- Invariance and Small Worlds: The stable sets of a game are the projections of the stable sets of any larger game in which it is embedded while preserving the original players' feasible strategies and payoffs.
^{[9]} - Decomposition and Player Splitting. The stable sets of the product of two independent games are the products of their stable sets. Stable sets are not affected by splitting a player into agents such that no path through the game tree includes actions of two agents.

For two-player games with perfect recall and generic payoffs, stability is equivalent to just three of these properties: a stable set uses only undominated strategies, includes a quasi-perfect equilibrium, and is immune to embedding in a larger game.^{[10]}

A stable set is defined mathematically by essentiality of the projection map from a closed connected neighborhood in the graph of the Nash equilibria over the space of perturbed games obtained by perturbing players' strategies toward completely mixed strategies. This definition requires more than every nearby game having a nearby equilibrium. Essentiality requires further that no deformation of the projection maps to the boundary, which ensures that perturbations of the fixed point problem defining Nash equilibria have nearby solutions. This is apparently necessary to obtain all the desirable properties listed above.

Mertens provided several formal definitions depending on the coefficient module used for homology or cohomology.

A formal definition requires some notation. For a given game let be product of the simplices of the players' of mixed strategies. For each , let and let be its topological boundary. For let be the minimum probability of any pure strategy. For any define the perturbed game as the game where the strategy set of each player is the same as in , but where the payoff from a strategy profile is the payoff in from the profile . Say that is a perturbed equilibrium of if is an equilibrium of . Let be the graph of the perturbed equilibrium correspondence over , viz., the graph is the set of those pairs such that is a perturbed equilibrium of . For , is the corresponding equilibrium of . Denote by the natural projection map from to . For , let , and for let . Finally, refers to Čech cohomology with integer coefficients.

The following is a version of the most inclusive of Mertens' definitions, called *-stability.

* Definition of a *-stable set*: is a *-stable set if for some closed subset of with it has the following two properties:

**Connectedness**: For every neighborhood of in , the set has a connected component whose closure is a neighborhood of in .**Cohomological Essentiality**: is nonzero for some .

If essentiality in cohomology or homology is relaxed to homotopy, then a weaker definition is obtained, which differs chiefly in a weaker form of the decomposition property.^{[11]}

- ↑ Kohlberg, Elon, and Jean-François Mertens (1986). "On the Strategic Stability of Equilibria" (PDF).
*Econometrica*.**54**(5): 1003–1037. CiteSeerX 10.1.1.295.4592. doi:10.2307/1912320. JSTOR 1912320.CS1 maint: uses authors parameter (link) - ↑ Mertens, Jean-François, 1989, and 1991. "Stable Equilibria - A Reformulation," Mathematics of Operations Research, 14: 575-625 and 16: 694-753.
- ↑ Govindan, Srihari, and Jean-François Mertens, 2004. "An Equivalent Definition of Stable Equilibria," International Journal of Game Theory, 32(3): 339-357.
- ↑ Govindan, Srihari & Robert Wilson, 2008. "Refinements of Nash Equilibrium," The New Palgrave Dictionary of Economics, 2nd edition. "Archived copy" (PDF). Archived from the original (PDF) on 2010-06-20. Retrieved 2012-02-12.CS1 maint: archived copy as title (link)
- ↑ Govindan, Srihari, and Robert Wilson, 2009. "On Forward Induction," Econometrica, 77(1): 1-28.
- ↑ Mertens, Jean-François, 2003. "Ordinality in Non Cooperative Games," International Journal of Game Theory, 32: 387–430.
- ↑ Mertens, Jean-François, 1992. "The Small Worlds Axiom for Stable Equilibria," Games and Economic Behavior, 4: 553-564.
- ↑ The requirement that the set is connected excludes the trivial refinement that selects all equilibria. If only a single (possibly unconnected) subset is selected then only the trivial refinement satisfies the conditions invoked by H. Norde, J. Potters, H. Reijnierse, and D. Vermeulen (1996): ``Equilibrium Selection and Consistency,
*Games and Economic Behavior, 12: 219-225.* - ↑ See Appendix D of Govindan, Srihari, and Robert Wilson, 2012. "Axiomatic Theory of Equilibrium Selection for Generic Two-Player Games," Econometrica, 70.
- ↑ Govindan, Srihari, and Robert Wilson, 2012. "Axiomatic Theory of Equilibrium Selection for Generic Two-Player Games," Econometrica, 70.
- ↑ Srihari Govindan and Robert Wilson, 2008. "Metastable Equilibria," Mathematics of Operations Research, 33: 787-820.

© 2019 raptorfind.com. Imprint, All rights reserved.