康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message) |

**Mechanism design** is a field in economics and game theory that takes an objectives-first approach to designing economic mechanisms or incentives, toward desired objectives, in strategic settings, where players act rationally. Because it starts at the end of the game, then goes backwards, it is also called **reverse game theory**. It has broad applications, from economics and politics (markets, auctions, voting procedures) to networked-systems (internet interdomain routing, sponsored search auctions).

Mechanism design studies solution concepts for a class of private-information games. Leonid Hurwicz explains that 'in a design problem, the goal function is the main "given", while the
mechanism is the unknown. Therefore, the design problem is the "inverse" of traditional economic theory, which is typically devoted to the analysis of the performance of a given mechanism.'^{[1]} So, two distinguishing features of these games are:

- that a game "designer" chooses the game structure rather than inheriting one
- that the designer is interested in the game's outcome

The 2007 Nobel Memorial Prize in Economic Sciences was awarded to Leonid Hurwicz, Eric Maskin, and Roger Myerson "for having laid the foundations of mechanism design theory".^{[2]}

In an interesting class of Bayesian games, one player, called the "principal", would like to condition his behavior on information privately known to other players. For example, the principal would like to know the true quality of a used car a salesman is pitching. He cannot learn anything simply by asking the salesman, because it is in the salesman's interest to distort the truth. However, in mechanism design the principal does have one advantage: He may design a game whose rules can influence others to act the way he would like.

Without mechanism design theory, the principal's problem would be difficult to solve. He would have to consider all the possible games and choose the one that best influences other players' tactics. In addition, the principal would have to draw conclusions from agents who may lie to him. Thanks to mechanism design, and particularly the revelation principle, the principal only needs to consider games in which agents truthfully report their private information.

A game of mechanism design is a game of private information in which one of the agents, called the principal, chooses the payoff structure. Following Harsanyi (1967), the agents receive secret "messages" from nature containing information relevant to payoffs. For example, a message may contain information about their preferences or the quality of a good for sale. We call this information the agent's "type" (usually noted and accordingly the space of types ). Agents then report a type to the principal (usually noted with a hat ) that can be a strategic lie. After the report, the principal and the agents are paid according to the payoff structure the principal chose.

The timing of the game is:

- The principal commits to a mechanism that grants an outcome as a function of reported type
- The agents report, possibly dishonestly, a type profile
- The mechanism is executed (agents receive outcome )

In order to understand who gets what, it is common to divide the outcome into a goods allocation and a money transfer, where stands for an allocation of goods rendered or received as a function of type, and stands for a monetary transfer as a function of type.

As a benchmark the designer often defines what would happen under full information. Define a ** mapping the (true) type profile directly to the allocation of goods received or rendered,**

In contrast a **mechanism** maps the *reported* type profile to an *outcome* (again, both a goods allocation and a money transfer )

A proposed mechanism constitutes a Bayesian game (a game of private information), and if it is well-behaved the game has a Bayesian Nash equilibrium. At equilibrium agents choose their reports strategically as a function of type

It is difficult to solve for Bayesian equilibria in such a setting because it involves solving for agents' best-response strategies and for the best inference from a possible strategic lie. Thanks to a sweeping result called the revelation principle, no matter the mechanism a designer can^{[3]} confine attention to equilibria in which agents truthfully report type. The **revelation principle** states: "To every Bayesian Nash equilibrium there corresponds a Bayesian game with the same equilibrium outcome but in which players truthfully report type."

This is extremely useful. The principle allows one to solve for a Bayesian equilibrium by assuming all players truthfully report type (subject to an incentive compatibility constraint). In one blow it eliminates the need to consider either strategic behavior or lying.

Its proof is quite direct. Assume a Bayesian game in which the agent's strategy and payoff are functions of its type and what others do, . By definition agent *i'*s equilibrium strategy is Nash in expected utility:

Simply define a mechanism that would induce agents to choose the same equilibrium. The easiest one to define is for the mechanism to commit to playing the agents' equilibrium strategies *for* them.

Under such a mechanism the agents of course find it optimal to reveal type since the mechanism plays the strategies they found optimal anyway. Formally, choose such that

The designer of a mechanism generally hopes either

- to design a mechanism that "implements" a social choice function
- to find the mechanism that maximizes some value criterion (e.g. profit)

To **implement** a social choice function is to find some transfer function that motivates agents to pick outcome . Formally, if the equilibrium strategy profile under the mechanism maps to the same goods allocation as a social choice function,

we say the mechanism implements the social choice function.

Thanks to the revelation principle, the designer can usually find a transfer function to implement a social choice by solving an associated truthtelling game. If agents find it optimal to truthfully report type,

we say such a mechanism is **truthfully implementable** (or just "implementable"). The task is then to solve for a truthfully implementable and impute this transfer function to the original game. An allocation is truthfully implementable if there exists a transfer function such that

which is also called the **incentive compatibility** (IC) constraint.

In applications, the IC condition is the key to describing the shape of in any useful way. Under certain conditions it can even isolate the transfer function analytically. Additionally, a participation (individual rationality) constraint is sometimes added if agents have the option of not playing.

Consider a setting in which all agents have a type-contingent utility function . Consider also a goods allocation that is vector-valued and size (which permits number of goods) and assume it is piecewise continuous with respect to its arguments.

The function is implementable only if

whenever and and *x* is continuous at . This is a necessary condition and is derived from the first- and second-order conditions of the agent's optimization problem assuming truth-telling.

Its meaning can be understood in two pieces. The first piece says the agent's marginal rate of substitution (MRS) increases as a function of the type,

In short, agents will not tell the truth if the mechanism does not offer higher agent types a better deal. Otherwise, higher types facing any mechanism that punishes high types for reporting will lie and declare they are lower types, violating the truthtelling IC constraint. The second piece is a monotonicity condition waiting to happen,

which, to be positive, means higher types must be given more of the good.

There is potential for the two pieces to interact. If for some type range the contract offered less quantity to higher types , it is possible the mechanism could compensate by giving higher types a discount. But such a contract already exists for low-type agents, so this solution is pathological. Such a solution sometimes occurs in the process of solving for a mechanism. In these cases it must be "ironed." In a multiple-good environment it is also possible for the designer to reward the agent with more of one good to substitute for less of another (e.g. butter for margarine). Multiple-good mechanisms are an ongoing problem in mechanism design theory.

Mechanism design papers usually make two assumptions to ensure implementability:

This is known by several names: the single-crossing condition, the sorting condition and the Spence–Mirrlees condition. It means the utility function is of such a shape that the agent's MRS is increasing in type.

This is a technical condition bounding the rate of growth of the MRS.

These assumptions are sufficient to provide that any monotonic is implementable (a exists that can implement it). In addition, in the single-good setting the single-crossing condition is sufficient to provide that only a monotonic is implementable, so the designer can confine his search to a monotonic .

Vickrey (1961) gives a celebrated result that any member of a large class of auctions assures the seller of the same expected revenue and that the expected revenue is the best the seller can do. This is the case if

- The buyers have identical valuation functions (which may be a function of type)
- The buyers' types are independently distributed
- The buyers types are drawn from a continuous distribution
- The type distribution bears the monotone hazard rate property
- The mechanism sells the good to the buyer with the highest valuation

The last condition is crucial to the theorem. An implication is that for the seller to achieve higher revenue he must take a chance on giving the item to an agent with a lower valuation. Usually this means he must risk not selling the item at all.

The Vickrey (1961) auction model was later expanded by Clarke (1971) and Groves to treat a public choice problem in which a public project's cost is borne by all agents, e.g. whether to build a municipal bridge. The resulting "Vickrey–Clarke–Groves" mechanism can motivate agents to choose the socially efficient allocation of the public good even if agents have privately known valuations. In other words, it can solve the "tragedy of the commons"—under certain conditions, in particular quasilinear utility or if budget balance is not required.

Consider a setting in which number of agents have quasilinear utility with private valuations where the currency is valued linearly. The VCG designer designs an incentive compatible (hence truthfully implementable) mechanism to obtain the true type profile, from which the designer implements the socially optimal allocation

The cleverness of the VCG mechanism is the way it motivates truthful revelation. It eliminates incentives to misreport by penalizing any agent by the cost of the distortion he causes. Among the reports the agent may make, the VCG mechanism permits a "null" report saying he is indifferent to the public good and cares only about the money transfer. This effectively removes the agent from the game. If an agent does choose to report a type, the VCG mechanism charges the agent a fee if his report is **pivotal**, that is if his report changes the optimal allocation *x* so as to harm other agents. The payment is calculated

which sums the distortion in the utilities of the other agents (and not his own) caused by one agent reporting.

Gibbard (1973) and Satterthwaite (1975) give an impossibility result similar in spirit to Arrow's impossibility theorem. For a very general class of games, only "dictatorial" social choice functions can be implemented.

A social choice function *f*() is **dictatorial** if one agent always receives his most-favored goods allocation,

The theorem states that under general conditions any truthfully implementable social choice function must be dictatorial if,

*X*is finite and contains at least three elements- Preferences are rational

Myerson and Satterthwaite (1983) show there is no efficient way for two parties to trade a good when they each have secret and probabilistically varying valuations for it, without the risk of forcing one party to trade at a loss. It is among the most remarkable negative results in economics—a kind of negative mirror to the fundamental theorems of welfare economics.

Mirrlees (1971) introduces a setting in which the transfer function *t*() is easy to solve for. Due to its relevance and tractability it is a common setting in the literature. Consider a single-good, single-agent setting in which the agent has quasilinear utility with an unknown type parameter

and in which the principal has a prior CDF over the agent's type . The principal can produce goods at a convex marginal cost *c*(*x*) and wants to maximize the expected profit from the transaction

subject to IC and IR conditions

The principal here is a monopolist trying to set a profit-maximizing price scheme in which it cannot identify the type of the customer. A common example is an airline setting fares for business, leisure and student travelers. Due to the IR condition it has to give every type a good enough deal to induce participation. Due to the IC condition it has to give every type a good enough deal that the type prefers its deal to that of any other.

A trick given by Mirrlees (1971) is to use the envelope theorem to eliminate the transfer function from the expectation to be maximized,

Integrating,

where is some index type. Replacing the incentive-compatible in the maximand,

after an integration by parts. This function can be maximized pointwise.

Because is incentive-compatible already the designer can drop the IC constraint. If the utility function satisfies the Spence–Mirrlees condition then a monotonic function exists. The IR constraint can be checked at equilibrium and the fee schedule raised or lowered accordingly. Additionally, note the presence of a hazard rate in the expression. If the type distribution bears the monotone hazard ratio property, the FOC is sufficient to solve for *t*(). If not, then it is necessary to check whether the monotonicity constraint (see sufficiency, above) is satisfied everywhere along the allocation and fee schedules. If not, then the designer must use Myerson ironing.

In some applications the designer may solve the first-order conditions for the price and allocation schedules yet find they are not monotonic. For example, in the quasilinear setting this often happens when the hazard ratio is itself not monotone. By the Spence–Mirrlees condition the optimal price and allocation schedules must be monotonic, so the designer must eliminate any interval over which the schedule changes direction by flattening it.

Intuitively, what is going on is the designer finds it optimal to **bunch** certain types together and give them the same contract. Normally the designer motivates higher types to distinguish themselves by giving them a better deal. If there are insufficiently few higher types on the margin the designer does not find it worthwhile to grant lower types a concession (called their information rent) in order to charge higher types a type-specific contract.

Consider a monopolist principal selling to agents with quasilinear utility, the example above. Suppose the allocation schedule satisfying the first-order conditions has a single interior peak at and a single interior trough at , illustrated at right.

- Following Myerson (1981) flatten it by choosing satisfying

- where is the inverse function of x mapping to and is the inverse function of x mapping to . That is, returns a before the interior peak and returns a after the interior trough.

- If the nonmonotonic region of borders the edge of the type space, simply set the appropriate function (or both) to the boundary type. If there are multiple regions, see a textbook for an iterative procedure; it may be that more than one troughs should be ironed together.

The proof uses the theory of optimal control. It considers the set of intervals in the nonmonotonic region of over which it might flatten the schedule. It then writes a Hamiltonian to obtain necessary conditions for a within the intervals

- that does satisfy monotonicity
- for which the monotonicity constraint is not binding on the boundaries of the interval

Condition two ensures that the satisfying the optimal control problem reconnects to the schedule in the original problem at the interval boundaries (no jumps). Any satisfying the necessary conditions must be flat because it must be monotonic and yet reconnect at the boundaries.

As before maximize the principal's expected payoff, but this time subject to the monotonicity constraint

and use a Hamiltonian to do it, with shadow price

where is a state variable and the control. As usual in optimal control the costate evolution equation must satisfy

Taking advantage of condition 2, note the monotonicity constraint is not binding at the boundaries of the interval,

meaning the costate variable condition can be integrated and also equals 0

The average distortion of the principal's surplus must be 0. To flatten the schedule, find an such that its inverse image maps to a interval satisfying the condition above.

- ↑ L. Hurwicz & S. Reiter (2006) Designing Economic Mechanisms, p. 30
- ↑ "The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2007" (Press release). Nobel Foundation. October 15, 2007. Retrieved 2008-08-15.
- ↑ In unusual circumstances some truth-telling games have more equilibria than the Bayesian game they mapped from. See Fudenburg-Tirole Ch. 7.2 for some references.

- Clarke, Edward H. (1971). "Multipart Pricing of Public Goods" (PDF).
*Public Choice*.**11**(1): 17–33. doi:10.1007/BF01726210. JSTOR 30022651.CS1 maint: ref=harv (link) - Gibbard, Allan (1973). "Manipulation of voting schemes: A general result" (PDF).
*Econometrica*.**41**(4): 587–601. doi:10.2307/1914083. JSTOR 1914083.CS1 maint: ref=harv (link) - Groves, Theodore (1973). "Incentives in Teams" (PDF).
*Econometrica*.**41**(4): 617–631. doi:10.2307/1914085. JSTOR 1914085.CS1 maint: ref=harv (link) - Harsanyi, John C. (1967). "Games with incomplete information played by "Bayesian" players, I-III. part I. The Basic Model".
*Management Science*.**14**(3): 159–182. doi:10.1287/mnsc.14.3.159. JSTOR 2628393.CS1 maint: ref=harv (link) - Mirrlees, J. A. (1971). "An Exploration in the Theory of Optimum Income Taxation" (PDF).
*Review of Economic Studies*.**38**(2): 175–208. doi:10.2307/2296779. JSTOR 2296779. Archived from the original (PDF) on 2017-05-10. Retrieved 2016-08-12.CS1 maint: ref=harv (link) - Myerson, Roger B.; Satterthwaite, Mark A. (1983). "Efficient Mechanisms for Bilateral Trading" (PDF).
*Journal of Economic Theory*.**29**(2): 265–281. doi:10.1016/0022-0531(83)90048-0.CS1 maint: ref=harv (link) - Satterthwaite, Mark Allen (1975). "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions".
*Journal of Economic Theory*.**10**(2): 187–217. CiteSeerX 10.1.1.471.9842. doi:10.1016/0022-0531(75)90050-2.CS1 maint: ref=harv (link) - Vickrey, William (1961). "Counterspeculation, Auctions, and Competitive Sealed Tenders" (PDF).
*The Journal of Finance*.**16**(1): 8–37. doi:10.1111/j.1540-6261.1961.tb02789.x.CS1 maint: ref=harv (link)

- Chapter 7 of Fudenberg, Drew; Tirole, Jean (1991),
*Game Theory*, Boston: MIT Press, ISBN 978-0-262-06141-4. A standard text for graduate game theory. - Chapter 23 of Mas-Colell; Whinston; Green (1995),
*Microeconomic Theory*, Oxford: Oxford University Press, ISBN 978-0-19-507340-9. A standard text for graduate microeconomics. - Milgrom, Paul (2004),
*Putting Auction Theory to Work*, New York: Cambridge University Press, ISBN 978-0-521-55184-7. Applications of mechanism design principles in the context of auctions. - Noam Nisan. A Google tech talk on mechanism design.
- Legros, Patrick; Cantillon, Estelle (2007). "What is mechanism design and why does it matter for policy-making?". Centre for Economic Policy Research.
- Roger B. Myerson (2008). "Mechanism Design,"
*The New Palgrave Dictionary of Economics Online, Abstract.*

- Eric Maskin "Nobel Prize Lecture" delivered on 8 December 2007 at Aula Magna, Stockholm University.

© 2019 raptorfind.com. Imprint, All rights reserved.