康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

Heads | Tails | |

Heads | +1, −1 | −1, +1 |

Tails | −1, +1 | +1, −1 |

Matching pennies |

**Matching pennies** is the name for a simple game used in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match (both heads or both tails), then Even keeps both pennies, so wins one from Odd (+1 for Even, −1 for Odd). If the pennies do not match (one heads and one tails) Odd keeps both pennies, so receives one from Even (−1 for Even, +1 for Odd).

Matching Pennies is a zero-sum game because each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the participants' total gains are added up and their total losses subtracted, the sum will be zero.

The game can be written in a payoff matrix (pictured right - from Even's point of view). Each cell of the matrix shows the two players' payoffs, with Even's payoffs listed first.

Matching pennies is used primarily to illustrate the concept of mixed strategies and a mixed strategy Nash equilibrium.^{[1]}

This game has no pure strategy Nash equilibrium since there is no pure strategy (heads or tails) that is a best response to a best response. In other words, there is no pair of pure strategies such that neither player would want to switch if told what the other would do. Instead, the unique Nash equilibrium of this game is in mixed strategies: each player chooses heads or tails with equal probability.^{[2]} In this way, each player makes the other indifferent between choosing heads or tails, so neither player has an incentive to try another strategy. The best-response functions for mixed strategies are depicted in Figure 1 below:

When either player plays the equilibrium, everyone's expected payoff is zero.

Heads | Tails | |

Heads | +7, -1 | -1, +1 |

Tails | -1, +1 | +1, -1 |

Matching pennies |

Varying the payoffs in the matrix can change the equilibrium point. For example, in the table shown on the right, Even has a chance to win 7 if both he and Odd play Heads. To calculate the equilibrium point in this game, note that a player playing a mixed strategy must be indifferent between his two actions (otherwise he would switch to a pure strategy). This gives us two equations:

- For the Even player, the expected payoff when playing Heads is and when playing Tails , and these must be equal, so .
- For the Odd player, the expected payoff when playing Heads is and when playing Tails , and these must be equal, so .

Note that is the Heads-probability of *Odd* and is the Heads-probability of *Even*. So the change in Even's payoff affects Odd's strategy and not his own strategy.

Human players do not always play the equilibrium strategy. Laboratory experiments reveal several factors that make players deviate from the equilibrium strategy, especially if matching pennies is played repeatedly:

- Humans are not good at randomizing. They may try to produce "random" sequences by switching their actions from Heads to Tails and vice versa, but they switch their actions too often (due to a gambler's fallacy). This makes it possible for expert players to predict their next actions with more than 50% chance of success. In this way, a positive expected payoff might be attainable.
- Humans are trained to detect patterns. They try to detect patterns in the opponent's sequence, even when such patterns do not exist, and adjust their strategy accordingly.
^{[3]} - Humans' behavior is affected by framing effects.
^{[4]}When the Odd player is named "the misleader" and the Even player is named "the guesser", the former focuses on trying to randomize and the latter focuses on trying to detect a pattern, and this increases the chances of success of the guesser. Additionally, the fact that Even wins when there is a match gives him an advantage, since people are better at matching than at mismatching (due to the Stimulus-Response compatibility effect).

Moreover, when the payoff matrix is asymmetric, other factors influence human behavior even when the game is not repeated:

- Players tend to increase the probability of playing an action which gives them a higher payoff, e.g. in the payoff matrix above, Even will tend to play more Heads. This is intuitively understandable, but it is not a Nash equilibrium: as explained above, the mixing probability of a player should depend only on the
*other*player's payoff, not his own payoff. This deviation can be explained as a quantal response equilibrium.^{[5]}^{[6]}In a quantal-response-equilibrium, the best-response curves are not sharp as in a standard Nash equilibrium. Rather, they change smoothly from the action whose probability is 0 to the action whose probability 1 (in other words, while in a Nash-equilibrium, a player chooses the best response with probability 1 and the worst response with probability 0, in a quantal-response-equilibrium the player chooses the best response with high probability that is smaller than 1 and the worst response with smaller probability that is higher than 0). The equilibrium point is the intersection point of the smoothed curves of the two players, which is different than the Nash-equilibrium point. - The own-payoff effects are mitigated by risk aversion.
^{[7]}Players tend to underestimate high gains and overestimate high losses; this moves the quantal-response curves and changes the quantal-response-equilibrium point. This apparently contradicts theoretical results regarding the irrelevance of risk-aversion in finitely-repeated zero-sum games.^{[8]}

The conclusions of laboratory experiments have been criticized on several grounds.^{[9]}^{[10]}

- Games in lab experiments are artificial and simplistic, and do not mimic real-life behavior.
- The payoffs in lab experiments are small, so subjects do not have much incentive to play optimally. In real-life, the market may "punish" such irrationality and cause players to behave more rationally.
- Subjects have other considerations than maximizing monetary payoffs, such as to avoid looking foolish or to please the experimenter.
- Lab experiments are short, and subjects do not have sufficient time to learn the optimal strategy.

To overcome these difficulties, several authors have done statistical analysis of professional sports games. These are zero-sum games with very high payoffs, and the players have devoted their lives to become experts. Often such games are strategically similar to matching pennies:

- In soccer penalty kicks, the kicker has two options - kick left or kick right, and the goalie has two options - jump left or jump right.
^{[11]}The kicker's probability of scoring a goal is higher when the choices do not match, and lower when the choices match. In general, the payoffs are asymmetric because each kicker has a stronger leg (usually the right leg) and his chances are better when kicking to the opposite direction (left). In a close examination of the actions of kickers and goalies, it was found^{[9]}^{[10]}that their actions do not deviate significantly from the prediction of a Nash equilibrium. - In tennis serve-and-return plays, the situation is similar. It was found
^{[12]}that the win rates are consistent with the minimax hypothesis, but the players' choices are not random: even professional tennis players are not good at randomizing, and switch their actions too often.

- Odds and evens - a game with the same strategic structure, that is played with fingers instead of coins.
- Rock paper scissors - a similar game in which each player has three strategies instead of two.
- Parity game - an unrelated (and much more complicated) two-player logic game, played on a colored graph.

- ↑ Gibbons, Robert (1992).
*Game Theory for Applied Economists*. Princeton University Press. pp. 29–33. ISBN 978-0-691-00395-5. - ↑ "Matching Pennies". GameTheory.net. Archived from the original on 2006-10-01.
- ↑ Mookherjee, Dilip; Sopher, Barry (1994). "Learning Behavior in an Experimental Matching Pennies Game".
*Games and Economic Behavior*.**7**: 62–91. doi:10.1006/game.1994.1037. - ↑ Eliaz, Kfir; Rubinstein, Ariel (2011). "Edgar Allan Poe's riddle: Framing effects in repeated matching pennies games".
*Games and Economic Behavior*.**71**: 88–99. doi:10.1016/j.geb.2009.05.010. - ↑ Ochs, Jack (1995). "Games with Unique, Mixed Strategy Equilibria: An Experimental Study".
*Games and Economic Behavior*.**10**: 202–217. doi:10.1006/game.1995.1030. - ↑ McKelvey, Richard; Palfrey, Thomas (1995). "Quantal Response Equilibria for Normal Form Games".
*Games and Economic Behavior*.**10**: 6–38. CiteSeerX 10.1.1.30.5152. doi:10.1006/game.1995.1023. - ↑ Goeree, Jacob K.; Holt, Charles A.; Palfrey, Thomas R. (2003). "Risk averse behavior in generalized matching pennies games" (PDF).
*Games and Economic Behavior*.**45**: 97–113. doi:10.1016/s0899-8256(03)00052-6. - ↑ Wooders, John; Shachat, Jason M. (2001). "On the Irrelevance of Risk Attitudes in Repeated Two-Outcome Games".
*Games and Economic Behavior*.**34**(2): 342. doi:10.1006/game.2000.0808. S2CID 2401322. - 1 2 Chiappori, P.; Levitt, S.; Groseclose, T. (2002). "Testing Mixed-Strategy Equilibria When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer" (PDF).
*American Economic Review*.**92**(4): 1138–1151. CiteSeerX 10.1.1.178.1646. doi:10.1257/00028280260344678. JSTOR 3083302. - 1 2 Palacios-Huerta, I. (2003). "Professionals Play Minimax".
*Review of Economic Studies*.**70**(2): 395–415. CiteSeerX 10.1.1.127.9097. doi:10.1111/1467-937X.00249. - ↑ There is also the option of kicking/standing in the middle, but it is less often used.
- ↑ Walker, Mark; Wooders, John (2001). "Minimax Play at Wimbledon".
*The American Economic Review*.**91**(5): 1521–1538. CiteSeerX 10.1.1.614.5372. doi:10.1257/aer.91.5.1521. JSTOR 2677937.

© 2019 raptorfind.com. Imprint, All rights reserved.