This is a video about (170705) 주간 아이돌 310회 블랙핑크 (BLACKPINK) - Weekly idol ep 310 BLACKPINK
主要支援:已於2009年4月8日到期 延伸支援:已於2014年4月8日到期(仅限Service Pack 3 x86(SP3 x86)及Service Pack 2 x64(SP2 x64)) 新增的功能 移除的功能 版本 开发历史 批評 主题 Windows XP(开发代号:)是微软公司推出供个人电脑使用的操作系统,包括商用及家用的桌上型电脑、笔记本电脑、媒体中心(英语:)和平板电脑等。其RTM版于2001年8月24日发布;零售版于2001年10月25日上市。其名字「」的意思是英文中的「体验」()。Windows ..
Nov 13, 2019- Explore dobdan222's board "교복", followed by 405 people on Pinterest. See more ideas about Asian girl, Korean student and Fashion.
Nov 10, 2019- Explore cutebear36088's board "여고딩", followed by 557 people on Pinterest. See more ideas about School looks, Fashion and School uniform.
Republika obeh narodov Habsburška monarhija Bavarska Saška Franconia Švabska Zaporoški kozaki Velika vojvodina Toskana Drugo obleganje Dunaja je potekalo leta 1683; pričelo se je 14. julija 1683, ko je Osmanski imperij obkolil Dunaj in končalo 11. septembra ..
Robert Henry Goldsborough (January 4, 1779 – October 5, 1836) was an American politician from Talbot County, Maryland. Goldsborough was born at "Myrtle Grove" near Easton, Maryland. He was educated by private tutors and graduated from St. John's College in ..
Anabolic steroids, also known more properly as anabolic–androgenic steroids (AAS), are steroidal androgens that include natural androgens like testosterone as well as synthetic androgens that are structurally related and have similar effects to testosterone. ..
Part of a series on |
Economics |
---|
|
|
By application |
Notable economists |
Glossary |
Information economics or the economics of information is a branch of microeconomic theory that studies how information and information systems affect an economy and economic decisions. Information has special characteristics: It is easy to create but hard to trust. It is easy to spread but hard to control. It influences many decisions. These special characteristics (as compared with other types of goods) complicate many standard economic theories.[1]
The subject of "information economics" is treated under Journal of Economic Literature classification code JEL D8 – Information, Knowledge, and Uncertainty. The present article reflects topics included in that code. There are several subfields of information economics. Information as signal has been described as a kind of negative measure of uncertainty.[2] It includes complete and scientific knowledge as special cases. The first insights in information economics related to the economics of information goods.
In recent decades, there have been influential advances in the study of information asymmetries[3] and their implications for contract theory, including market failure as a possibility.[4]
Information economics is formally related to game theory as two different types of games that may apply, including games with perfect information,[5] complete information,[6] and incomplete information.[7] Experimental and game-theory methods have been developed to model and test theories of information economics,[8] including potential public-policy applications such as mechanism design to elicit information-sharing and otherwise welfare-enhancing behavior.[9]
The starting point for economic analysis is the observation that information has economic value because it allows individuals to make choices that yield higher expected payoffs or expected utility than they would obtain from choices made in the absence of information. Data valuation is an emerging discipline that seeks to understand and measure the economic characteristics of information and data.[10]
Much of the literature in information economics was originally inspired by Friedrich Hayek's "The Use of Knowledge in Society" on the uses of the price mechanism in allowing information decentralization to order the effective use of resources. [11] Although Hayek's work was intended to discredit the effectiveness of central planning agencies over a free market system, his proposal that price mechanisms communicate information about scarcity of goods inspired Abba Lerner, Tjalling Koopmans, Leonid Hurwicz, George Stigler and others to further develop the field of information economics.[citation needed] Next to market coordination through the price mechanism, transactions can also be executed within organizations. The information requirements of the transaction are the prime determinant for the actual (mix of) coordination mechanism(s) that we will observe.[12]
Information asymmetry means that the parties in the interaction have different information, e.g. one party has more or better information than the other. Expecting the other side to have better information can lead to a change in behavior. The less informed party may try to prevent the other from taking advantage of him. This change in behavior may cause inefficiency. Examples of this problem are selection (adverse or advantageous) and moral hazard.[13]
A classic paper on adverse selection is George Akerlof's The Market for Lemons.[14] There are two primary solutions to this problem, signalling and screening.
For moral hazard, contracting between principal and agent may be describable as a second best solution where payoffs alone are observable with information asymmetry.[15]
Michael Spence originally proposed the idea of signaling. He proposed that in a situation with information asymmetry, it is possible for people to signal their type, thus credibly transferring information to the other party and resolving the asymmetry.
This idea was originally studied in the context of looking for a job. An employer is interested in hiring a new employee who is skilled in learning. Of course, all prospective employees will claim to be skilled at learning, but only they know if they really are. This is an information asymmetry.
Spence proposed that going to college can function as a credible signal of an ability to learn. Assuming that people who are skilled in learning can finish college more easily than people who are unskilled, then by attending college the skilled people signal their skill to prospective employers. This is true even if they didn't learn anything in school, and school was there solely as a signal. This works because the action they took (going to school) was easier for people who possessed the skill that they were trying to signal (a capacity for learning).[16]
Joseph E. Stiglitz pioneered the theory of screening.[17] In this way the underinformed party can induce the other party to reveal their information. They can provide a menu of choices in such a way that the optimal choice of the other party depends on their private information. By making a particular choice, the other party reveals that he has information that makes that choice optimal. For example, an amusement park wants to sell more expensive tickets to customers who value their time more and money less than other customers. Asking customers their willingness to pay will not work - everyone will claim to have low willingness to pay. But the park can offer a menu of priority and regular tickets, where priority allows skipping the line at rides and is more expensive. This will induce the customers with a higher value of time to buy the priority ticket and thereby reveal their type.
Buying and selling information is not the same as buying and selling most other goods. There are three factors that make the economics of buying and selling information different from solid goods:
First of all, information is non-rivalrous, which means that consuming information does not exclude someone else from also consuming it. A related characteristic that alters information markets is that information has almost zero marginal cost. This means that once the first copy exists, it costs nothing or almost nothing to make a second copy. This makes it easy to sell over and over. However, it makes classic marginal cost pricing completely infeasible.
Second, exclusion is not a natural property of information goods, though it is possible to construct exclusion artificially. However, the nature of information is that if it is known, it is difficult to exclude others from its use. Since information is likely to be both non-rivalrous and non-excludable, it is frequently considered an example of a public good.
Third is that the information market does not exhibit high degrees of transparency. That is, to evaluate the information, the information must be known, so you have to invest in learning it to evaluate it. To evaluate a bit of software you have to learn to use it; to evaluate a movie you have to watch it.
The importance of these properties is explained by De Long and Froomkin in The Next Economy.
Carl Shapiro and Hal Varian described Network effect (also called network externalities) as products gaining additional value from each additional user of that good or service.[18] Network effects are externalities in which they provide an immediate benefit when an additional user joins the network, increasing the network size. The total value of the network depends upon the total adopters but carries only a marginal benefit for new users. This leads to a direct network effect for each user's adoption of the good, with an increased incentive for adoption as other user's adopt and join the network.[19] The indirect network effect occurs as a complementary goods benefit from the adoption of the initial product.[20]
The growth of data is constantly expanding and growing at an exponential rate, however, the application of this data is far lower than the creation of it.[21][22]
New data brings about a potential increase in bad information which can crowd out the good information. This increase in unverified information is due to the easy and free nature of creating online data, disrupting potential for users from finding sourced and verified data.[23]
As new networks are developed, early adopters form the social dynamics of the greater population and develop product maturity known as Critical mass. Product maturity is when they become self-sustaining and is more likely to occur when there are positive cash flows, consistent revenue flows, customer retention and brand engagement.[24] To form a following, low initial prices need to be offered, along with wide-spread marketing to help create the snowball effect.
In 2001, the Nobel prize in economics was awarded to George Akerlof, Michael Spence, and Joseph E. Stiglitz "for their analyses of markets with asymmetric information".[25]
Technology], 978-0134645957