康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..
Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumentase que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..
Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..
沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。
希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年前687年；另一種是前716年前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..
The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..
兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。
Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..
Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..
第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..
This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. (December 2018) (Learn how and when to remove this template message) 
Part of a series on 
Economics 



By application 
Notable economists 
Glossary 
Financial economics is a branch of economics which concerns trade in which some type of money appears on both sides of the transaction, as opposed to situations in which money is traded for a good or service.^{[1]} Its concern is thus the interrelation of financial variables, such as prices, interest rates and shares, as opposed to those concerning the real economy. It has two main areas of focus:^{[2]} asset pricing and corporate finance; the first being the perspective of providers of capital, i.e. investors, and the second of users of capital. It thus provides the theoretical underpinning for much of finance.
The subject is concerned with "the allocation and deployment of economic resources, both spatially and across time, in an uncertain environment".^{[3]} It therefore centers on decision making under uncertainty in the context of the financial markets, and the resultant economic and financial models and principles, and is concerned with deriving testable or policy implications from acceptable assumptions. It is built on the foundations of microeconomics and decision theory.
Financial econometrics is the branch of financial economics that uses econometric techniques to parameterise these relationships. Mathematical finance is related in that it will derive and extend the mathematical or numerical models suggested by financial economics. The emphasis there is mathematical consistency, as opposed to compatibility with economic theory. Financial economics has a primarily microeconomic focus, whereas monetary economics is primarily macroeconomic in nature.
Fundamental valuation result 
Four equivalent formulations,^{[4]} where:

As above, the discipline essentially explores how rational investors would apply decision theory to the problem of investment. The subject is thus built on the foundations of microeconomics and decision theory, and derives several key results for the application of decision making under uncertainty to the financial markets. The underlying economic logic distills to a ”fundamental valuation result”,^{[4]}^{[5]} as aside, which is developed in the following sections.
Underlying all of financial economics are the concepts of present value and expectation.^{[4]}
Calculating their present value allows the decision maker to aggregate the cashflows (or other returns) to be produced by the asset in the future, to a single value at the date in question, and to thus more readily compare two opportunities; this concept is therefore the starting point for financial decision making. (Its history is correspondingly early: Richard Witt discusses compound interest in depth already in 1613, in his book "Arithmeticall Questions";^{[6]} further developed by Johan de Witt and Edmond Halley.)
An immediate extension is to combine probabilities with present value, leading to the expected value criterion which sets asset value as a function of the sizes of the expected payouts and the probabilities of their occurrence, and respectively. (These ideas originate with Blaise Pascal and Pierre de Fermat in 1654.)
This decision method, however, fails to consider risk aversion ("as any student of finance knows"^{[4]}). In other words, since individuals receive greater utility from an extra dollar when they are poor and less utility when comparatively rich, the approach is to therefore "adjust" the weight assigned to the various outcomes ("states") correspondingly, . See Indifference price. (Some investors may in fact be risk seeking as opposed to risk averse, but the same logic would apply).
Choice under uncertainty here may then be characterized as the maximization of expected utility. More formally, the resulting expected utility hypothesis states that, if certain axioms are satisfied, the subjective value associated with a gamble by an individual is that individual's statistical expectation of the valuations of the outcomes of that gamble.
The impetus for these ideas arise from various inconsistencies observed under the expected value framework, such as the St. Petersburg paradox; see also Ellsberg paradox. (The development here is originally due to Daniel Bernoulli in 1738, and later formalized by John von Neumann and Oskar Morgenstern in 1947.)
JEL classification codes 
In the Journal of Economic Literature classification codes, Financial Economics is one of the 19 primary classifications, at JEL: G. It follows Monetary and International Economics and precedes Public Economics. For detailed subclassifications see JEL classification codes § G. Financial Economics.
The New Palgrave Dictionary of Economics (2008, 2nd ed.) also uses the JEL codes to classify its entries in v. 8, Subject Index, including Financial Economics at pp. 863–64. The below have links to entry abstracts of The New Palgrave Online for each primary or secondary JEL category (10 or fewer per page, similar to Google searches):
Tertiary category entries can also be searched.^{[7]} 
The concepts of arbitragefree, "rational", pricing and equilibrium are then coupled with the above to derive "classical"^{[8]} (or "neoclassical"^{[9]}) financial economics.
Rational pricing is the assumption that asset prices (and hence asset pricing models) will reflect the arbitragefree price of the asset, as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.
Economic equilibrium is, in general, a state in which economic forces such as supply and demand are balanced, and, in the absence of external influences these equilibrium values of economic variables will not change. General equilibrium deals with the behavior of supply, demand, and prices in a whole economy with several or many interacting markets, by seeking to prove that a set of prices exists that will result in an overall equilibrium. (This is in contrast to partial equilibrium, which only analyzes single markets.)
The two concepts are linked as follows: where market prices do not allow for profitable arbitrage, i.e. they comprise an arbitragefree market, then these prices are also said to constitute an "arbitrage equilibrium". Intuitively, this may be seen by considering that where an arbitrage opportunity does exist, then prices can be expected to change, and are therefore not in equilibrium.^{[10]} An arbitrage equilibrium is thus a precondition for a general economic equilibrium.
The immediate, and formal, extension of this idea, the fundamental theorem of asset pricing, shows that where markets are as described —and are additionally (implicitly and correspondingly) complete—one may then make financial decisions by constructing a risk neutral probability measure corresponding to the market. "Complete" here means that there is a price for every asset in every possible state of the world, , and that the complete set of possible bets on future statesoftheworld can therefore be constructed with existing assets (assuming no friction): essentially solving simultaneously for n (riskneutral) probabilities, , given n prices. The formal derivation will proceed by arbitrage arguments.^{[4]}^{[10]} For a simplified example see Rational pricing § Risk neutral valuation, where the economy has only two possible states—up and down—and where and (=) are the two corresponding (i.e. implied) probabilities, and in turn, the derived distribution, or "measure".
With this measure in place, the expected, i.e. required, return of any security (or portfolio) will then equal the riskless return, plus an "adjustment for risk",^{[4]} i.e. a securityspecific risk premium, compensating for the extent to which its cashflows are unpredictable. All pricing models are then essentially variants of this, given specific assumptions or conditions.^{[4]}^{[5]} This approach is consistent with the above, but with the expectation based on "the market" (i.e. arbitragefree, and, per the theorem, therefore in equilibrium) as opposed to individual preferences.
Thus, continuing the example, in pricing a derivative instrument its forecasted cashflows in the up and downstates, and , are multiplied through by and , and are then discounted at the riskfree interest rate; per equation above. In pricing a “fundamental”, underlying, instrument (in equilibrium), on the other hand, a riskappropriate premium over riskfree is required in the discounting, essentially employing the first equation with and combined. In general, this may be derived by the CAPM (or extensions) as will be seen under #Uncertainty.
The difference is explained as follows: By construction, the value of the derivative will (must) grow at the risk free rate, and, by arbitrage arguments, its value must then be discounted correspondingly; in the case of an option, this is achieved by “manufacturing” the instrument as a combination of the underlying and a risk free “bond”; see Rational pricing § Delta hedging (and #Uncertainty below). Where the underlying is itself being priced, such “manufacturing” is of course not possible  the instrument being "fundamental"  and a premium is then required for risk.
With the above relationship established, the further specialized Arrow–Debreu model may be derived. This result suggests that, under certain economic conditions, there must be a set of prices such that aggregate supplies will equal aggregate demands for every commodity in the economy. The analysis here is often undertaken assuming a representative agent.^{[11]} The Arrow–Debreu model applies to economies with maximally complete markets, in which there exists a market for every time period and forward prices for every commodity at all time periods.
A direct extension, then, is the concept of a state price security (also called an Arrow–Debreu security), a contract that agrees to pay one unit of a numeraire (a currency or a commodity) if a particular state occurs ("up" and "down" in the simplified example above) at a particular time in the future and pays zero numeraire in all the other states. The price of this security is the state price of this particular state of the world.
In the above example, the state prices, , would equate to the present values of and : i.e. what one would pay today, respectively, for the up and downstate securities; the state price vector is the vector of state prices for all states. Applied to derivative valuation, the price today would simply be [× + ×]; the second formula (see above regarding the absence of a risk premium here). For a continuous random variable indicating a continuum of possible states, the value is found by integrating over the state price "density". These concepts are extended to martingale pricing and the related riskneutral measure. See also Stochastic discount factor.
State prices find immediate application as a conceptual tool ("contingent claim analysis");^{[4]} but can also be applied to valuation problems.^{[12]} Given the pricing mechanism described, one can decompose the derivative value — true in fact for "every security"^{[2]} — as a linear combination of its stateprices; i.e. backsolve for the stateprices corresponding to observed derivative prices.^{[13]}^{[12]} These recovered stateprices can then be used for valuation of other instruments with exposure to the underlyer, or for other decision making relating to the underlyer itself. (Breeden and Litzenberger's work in 1978^{[14]} established the use of state prices in financial economics.)
The capital asset pricing model (CAPM):
The expected return used when discounting cashflows on an asset , is the riskfree rate plus the market premium multiplied by beta (), the asset's correlated volatility relative to the overall market . 
The Black–Scholes formula for the value of a call option: 
Applying the above economic concepts, we may then derive various economic and financial models and principles. As above, the two usual areas of focus are Asset Pricing and Corporate Finance, the first being the perspective of providers of capital, the second of users of capital. Here, and for (almost) all other financial economics models, the questions addressed are typically framed in terms of "time, uncertainty, options, and information",^{[1]}^{[11]} as will be seen below.
Applying this framework, with the above concepts, leads to the required models. This derivation begins with the assumption of "no uncertainty" and is then expanded to incorporate the other considerations. (This division sometimes denoted "deterministic" and "random",^{[15]} or "stochastic".)
The starting point here is “Investment under certainty". The Fisher separation theorem, asserts that the objective of a corporation will be the maximization of its present value, regardless of the preferences of its shareholders. Related is the Modigliani–Miller theorem, which shows that, under certain conditions, the value of a firm is unaffected by how that firm is financed, and depends neither on its dividend policy nor its decision to raise capital by issuing stock or selling debt. The proof here proceeds using arbitrage arguments, and acts as a benchmark for evaluating the effects of factors outside the model that do affect value.
The mechanism for determining (corporate) value is provided by The Theory of Investment Value, which proposes that the value of an asset should be calculated using "evaluation by the rule of present worth". Thus, for a common stock, the intrinsic, longterm worth is the present value of its future net cashflows, in the form of dividends. What remains to be determined is the appropriate discount rate. Later developments show that, "rationally", i.e. in the formal sense, the appropriate discount rate here will (should) depend on the asset's riskiness relative to the overall market, as opposed to its owners' preferences; see below. Net present value (NPV) is the direct extension of these ideas typically applied to Corporate Finance decisioning. For other results, as well as specific models developed here, see the list of "Equity valuation" topics under Outline of finance § Discounted cash flow valuation. (John Burr Williams published his "Theory" in 1938; NPV was introduced by Joel Dean in 1951)
Bond valuation, in that cashflows (coupons and return of principal) are deterministic, may proceed in the same fashion.^{[15]} An immediate extension, Arbitragefree bond pricing, discounts each cashflow at the market derived rate — i.e. at each coupon's corresponding zerorate — as opposed to an overall rate. In many treatments bond valuation precedes equity valuation, under which cashflows (dividends) are not "known" per se. Williams and onward allow for forecasting as to these — based on historic ratios or published policy — and cashflows are then treated as essentially deterministic; see below under #Corporate finance theory.
These "certainty" results are all commonly employed under corporate finance; uncertainty is the focus of "asset pricing models", as follows.
For "choice under uncertainty" the twin assumptions of rationality and market efficiency, as more closely defined, lead to modern portfolio theory (MPT) with its capital asset pricing model (CAPM)—an equilibriumbased result—and to the Black–Scholes–Merton theory (BSM; often, simply Black–Scholes) for option pricing—an arbitragefree result. As above, the (intuitive) link between these, is that the latter derivative prices are calculated such that they are arbitragefree with respect to the more fundamental, equilibrium determined, securities prices; see asset pricing.
Briefly, and intuitively—and consistent with #Arbitragefree pricing and equilibrium above—the relationship between rationality and efficiency is as follows.^{[16]} Given the ability to profit from private information, selfinterested traders are motivated to acquire and act on their private information. In doing so, traders contribute to more and more "correct", i.e. efficient, prices: the efficientmarket hypothesis, or EMH. Thus, if prices of financial assets are (broadly) efficient, then deviations from these (equilibrium) values could not last for long. (See Earnings response coefficient.) The EMH (implicitly) assumes that average expectations constitute an "optimal forecast", i.e. prices using all available information, are identical to the best guess of the future: the assumption of rational expectations. The EMH does allow that when faced with new information, some investors may overreact and some may underreact, but what is required, however, is that investors' reactions follow a normal distribution—so that the net effect on market prices cannot be reliably exploited to make an abnormal profit. In the competitive limit, then, market prices will reflect all available information and prices can only move in response to news:^{[17]} the random walk hypothesis. This news, of course, could be "good" or "bad", minor or, less common, major; and these moves are then, correspondingly, normally distributed; with the price therefore following a lognormal distribution. (The EMH was presented by Eugene Fama in a 1970 review paper,^{[18]} consolidating previous works re random walks in stock prices: Jules Regnault, 1863; Louis Bachelier, 1900; Maurice Kendall, 1953; Paul Cootner, 1964; and Paul Samuelson, 1965, among others.)
Under these conditions investors can then be assumed to act rationally: their investment decision must be calculated or a loss is sure to follow; correspondingly, where an arbitrage opportunity presents itself, then arbitrageurs will exploit it, reinforcing this equilibrium. Here, as under the certaintycase above, the specific assumption as to pricing is that prices are calculated as the present value of expected future dividends, ^{[5]} ^{[17]} ^{[11]} as based on currently available information. What is required though is a theory for determining the appropriate discount rate, i.e. "required return", given this uncertainty: this is provided by the MPT and its CAPM. Relatedly, rationality — in the sense of arbitrageexploitation — gives rise to Black–Scholes; option values here ultimately consistent with the CAPM.
In general, then, while portfolio theory studies how investors should balance risk and return when investing in many assets or securities, the CAPM is more focused, describing how, in equilibrium, markets set the prices of assets in relation to how risky they are. This result will be independent of the investor's level of risk aversion and assumed utility function, thus providing a readily determined discount rate for corporate finance decision makers as above,^{[19]} and for other investors. The argument proceeds as follows: If one can construct an efficient frontier—i.e. each combination of assets offering the best possible expected level of return for its level of risk, see diagram—then meanvariance efficient portfolios can be formed simply as a combination of holdings of the riskfree asset and the "market portfolio" (the Mutual fund separation theorem), with the combinations here plotting as the capital market line, or CML. Then, given this CML, the required return on a risky security will be independent of the investor's utility function, and solely determined by its covariance ("beta") with aggregate, i.e. market, risk. This is because investors here can then maximize utility through leverage as opposed to pricing; see Separation property (finance), Markowitz model § Choosing the best portfolio and CML diagram aside. As can be seen in the formula aside, this result is consistent with the preceding, equaling the riskless return plus an adjustment for risk.^{[5]} A more modern, direct, derivation is as described at the bottom of this section; which can be generalized to derive other pricing models. (The efficient frontier was introduced by Harry Markowitz in 1952. The CAPM was derived by Jack Treynor (1961, 1962), William F. Sharpe (1964), John Lintner (1965) and Jan Mossin (1966) independently. )
Black–Scholes provides a mathematical model of a financial market containing derivative instruments, and the resultant formula for the price of Europeanstyled options. The model is expressed as the Black–Scholes equation, a partial differential equation describing the changing price of the option over time; it is derived assuming lognormal, geometric Brownian motion (see Brownian model of financial markets). The key financial insight behind the model is that one can perfectly hedge the option by buying and selling the underlying asset in just the right way and consequently "eliminate risk", absenting the risk adjustment from the pricing (, the value, or price, of the option, grows at , the riskfree rate).^{[4]}^{[5]} This hedge, in turn, implies that there is only one right price—in an arbitragefree sense—for the option. And this price is returned by the Black–Scholes option pricing formula. (The formula, and hence the price, is consistent with the equation, as the formula is the solution to the equation.) Since the formula is without reference to the share's expected return, Black–Scholes inheres risk neutrality; intuitively consistent with the "elimination of risk" here, and mathematically consistent with #Arbitragefree pricing and equilibrium above. Relatedly, therefore, the pricing formula may also be derived directly via risk neutral expectation. (BSM  two seminal 1973 papers by Fischer Black and Myron Scholes,^{[20]} and Robert C. Merton ^{[21]}  is consistent with "previous versions of the formula" of Louis Bachelier (1900) and Edward O. Thorp (1967);^{[22]} although these were more "actuarial" in flavor, and had not established riskneutral discounting.^{[9]} See also Paul Samuelson (1965).^{[23]} Vinzenz Bronzin (1908) produced very early results, also. Itô's lemma (Kiyosi Itô, 1944) provides the underlying mathematics.)
As mentioned, it can be shown that the two models are consistent; then, as is to be expected, "classical" financial economics is thus unified. Here, the Black Scholes equation can alternatively be derived from the CAPM, and the price obtained from the Black–Scholes model is thus consistent with the expected return from the CAPM.^{[24]}^{[9]} The Black–Scholes theory, although built on Arbitragefree pricing, is therefore consistent with the equilibrium based capital asset pricing. Both models, in turn, are ultimately consistent with the Arrow–Debreu theory, and can be derived via statepricing — essentially, by expanding the fundamental result above — further explaining, and if required demonstrating, this unity.^{[4]} Here, the CAPM is derived by linking , risk aversion, to overall market return, and setting the return on security as ; see Stochastic discount factor § Properties. The BlackScholes formula is found, in the limit, by attaching a binomial probability to each of numerous possible spotprices (states) and then rearranging for the terms corresponding to and , per the boxed description; see Binomial options pricing model § Relationship with Black–Scholes.
More recent work further generalizes and extends these models. As regards asset pricing, developments in equilibriumbased pricing are discussed under "Portfolio theory" below, while "Derivative pricing" relates to riskneutral, i.e. arbitragefree, pricing. As regards the use of capital, "Corporate finance theory" relates, mainly, to the application of these models.
The majority of developments here relate to required return, i.e. pricing, extending the basic CAPM. Multifactor models such as the Fama–French threefactor model and the Carhart fourfactor model, propose factors other than market return as relevant in pricing. The intertemporal CAPM and consumptionbased CAPM similarly extend the model. With intertemporal portfolio choice, the investor now repeatedly optimizes her portfolio; while the inclusion of consumption (in the economic sense) then incorporates all sources of wealth, and not just marketbased investments, into the investor's calculation of required return.
Whereas the above extend the CAPM, the singleindex model is a more simple model. It assumes, only, a correlation between security and market returns, without (numerous) other economic assumptions. It is useful in that it simplifies the estimation of correlation between securities, significantly reducing the inputs for building the correlation matrix required for portfolio optimization. The arbitrage pricing theory (APT; Stephen Ross, 1976) similarly differs as regards its assumptions. APT "gives up the notion that there is one right portfolio for everyone in the world, and ...replaces it with an explanatory model of what drives asset returns."^{[25]} It returns the required (expected) return of a financial asset as a linear function of various macroeconomic factors, and assumes that arbitrage should bring incorrectly priced assets back into line.
As regards portfolio optimization, the Black–Litterman model (1992) departs from the original Markowitz model  i.e. of constructing portfolios via an efficient frontier. Black–Litterman instead starts with an equilibrium assumption, and is then modified to take into account the 'views' (i.e., the specific opinions about asset returns) of the investor in question to arrive at a bespoke asset allocation. Where factors additional to volatility are considered (kurtosis, skew...) then multiplecriteria decision analysis can be applied; here deriving a Pareto efficient portfolio. The universal portfolio algorithm (Thomas M. Cover, 1991) applies machine learning to asset selection, learning adaptively from historical data. Behavioral portfolio theory recognizes that investors have varied aims and create an investment portfolio that meets a broad range of goals. Copulas have lately been applied here; recently this is the case also for genetic algorithms and Machine learning, more generally. See Portfolio optimization § Improving portfolio optimization for other techniques and objectives.
PDE for a zerocoupon bond:
Interpretation: Analogous to BlackScholes, arbitrage arguments describe the instantaneous change in the bond price for changes in the (riskfree) short rate ; the analyst selects the specific shortrate model to be employed. 
As regards derivative pricing, the binomial options pricing model provides a discretized version of Black–Scholes, useful for the valuation of American styled options. Discretized models of this type are built—at least implicitly—using stateprices (as above); relatedly, a large number of researchers have used options to extract stateprices for a variety of other applications in financial economics.^{[4]}^{[24]}^{[13]} For path dependent derivatives, Monte Carlo methods for option pricing are employed; here the modelling is in continuous time, but similarly uses risk neutral expected value. Various other numeric techniques have also been developed. The theoretical framework too has been extended such that martingale pricing is now the standard approach.
Drawing on these techniques, models for various other underlyings and applications have also been developed, all based on the same logic (using "contingent claim analysis"). Real options valuation allows that option holders can influence the option's underlying; models for employee stock option valuation explicitly assume nonrationality on the part of option holders; Credit derivatives allow that payment obligations or delivery requirements might not be honored. Exotic derivatives are now routinely valued. Multiasset underlyers are handled via simulation or copula based analysis.
Similarly, the various short rate models allow for an extension of these techniques to fixed income and interest rate derivatives. (The Vasicek and CIR models are equilibriumbased, while Ho–Lee and subsequent models are based on arbitragefree pricing.) The more general HJM Framework describes the dynamics of the full forward rate curve  as opposed to working with short rates  and is then more widely applied. The valuation of the underlying bonds  additional to their derivatives  is relatedly extended, particularly for hybrid securities, where credit risk is combined with uncertainty re future rates; see Bond valuation § Stochastic calculus approach and Lattice model (finance) § Hybrid securities. (Oldrich Vasicek developed his pioneering short rate model in 1977.^{[26]} The HJM framework originates from the work of David Heath, Robert A. Jarrow, and Andrew Morton in 1987.^{[27]})
Following the Crash of 1987, equity options traded in American markets began to exhibit what is known as a "volatility smile"; that is, for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices, and thus implied volatilities, than what is suggested by BSM. (The pattern differs across various markets.) Modelling the volatility smile is an active area of research, and developments here — as well as implications re the standard theory — are discussed in the next section.
After the financial crisis of 2007–2008, a further development: (over the counter) derivative pricing had relied on the BSM risk neutral pricing framework, under the assumptions of funding at the risk free rate and the ability to perfectly replicate cashflows so as to fully hedge. This, in turn, is built on the assumption of a creditriskfree environment — called into question during the crisis. Addressing this, therefore, issues such as counterparty credit risk, funding costs and costs of capital are now additionally considered when pricing,^{[28]} and a Credit Valuation Adjustment, or CVA—and potentially other valuation adjustments, collectively xVA—is generally added to the riskneutral derivative value.
A related, and perhaps more fundamental change, is that discounting is now on the Overnight Index Swap (OIS) curve, as opposed to LIBOR as used previously. This is because postcrisis, the overnight rate is considered a better proxy for the "riskfree rate".^{[29]} (Also, practically, the interest paid on cash collateral is usually the overnight rate; OIS discounting is then, sometimes, referred to as "CSA discounting".) Swap pricing  and, therefore, yield curve construction  is further modified: previously, swaps were valued off a single "self discounting" interest rate curve; whereas post crisis, to accommodate OIS discounting, valuation is now under a "multicurve framework" where "forecast curves" are constructed for each floatingleg LIBOR tenor, with discounting on the common OIS curve.
Corporate finance theory has also been extended: mirroring the above developments, assetvaluation and decisioning no longer need assume "certainty". Monte Carlo methods in finance allow financial analysts to construct "stochastic" or probabilistic corporate finance models, as opposed to the traditional static and deterministic models;^{[30]} see Corporate finance § Quantifying uncertainty. Relatedly, Real Options theory allows for owner—i.e. managerial—actions that impact underlying value: by incorporating option pricing logic, these actions are then applied to a distribution of future outcomes, changing with time, which then determine the "project's" valuation today.^{[31]} (Simulation was first applied to (corporate) finance by David B. Hertz in 1964; Real options in corporate finance were first discussed by Stewart Myers in 1977.)
More traditionally, decision trees—which are complementary—have been used to evaluate projects, by incorporating in the valuation (all) possible events (or states) and consequent management decisions;^{[32]}^{[30]} the correct discount rate here reflecting each point's "nondiversifiable risk looking forward."^{[30]} (This technique predates the use of real options in corporate finance;^{[33]} it is borrowed from operations research, and is not a "financial economics development" per se.)
Related to this, is the treatment of forecasted cashflows in equity valuation. In many cases, following Williams above, the average (or most likely) cashflows were discounted,^{[34]} as opposed to a more correct statebystate treatment under uncertainty; see comments under Financial modeling § Accounting. In more modern treatments, then, it is the expected cashflows (in the mathematical sense: ) combined into an overall value per forecast period which are discounted. ^{[35]} ^{[36]} ^{[37]} ^{[30]} And using the CAPM—or extensions—the discounting here is at the riskfree rate plus a premium linked to the uncertainty of the entity or project cash flows;^{[30]}^{[36]} (essentially, and combined).
Other developments here include^{[38]} agency theory, which analyses the difficulties in motivating corporate management (the "agent") to act in the best interests of shareholders (the "principal"), rather than in their own interests. Clean surplus accounting and the related residual income valuation provide a model that returns price as a function of earnings, expected returns, and change in book value, as opposed to dividends. This approach, to some extent, arises due to the implicit contradiction of seeing value as a function of dividends, while also holding that dividend policy cannot influence value per Modigliani and Miller's "Irrelevance principle"; see Dividend policy § Irrelevance of dividend policy.
The typical application of real options is to capital budgeting type problems as described. However, they are also applied to questions of capital structure and dividend policy, and to the related design of corporate securities;^{[39]} and since stockholder and bondholders have different objective functions, in the analysis of the related agency problems.^{[31]} In all of these cases, stateprices can provide the marketimplied information relating to the corporate, as above, which is then applied to the analysis. For example, convertible bonds can (must) be priced consistent with the stateprices of the corporate's equity.^{[12]}^{[35]}
As above, there is a very close link between (i) the random walk hypothesis, with the associated expectation that price changes should follow a normal distribution, on the one hand, and (ii) market efficiency and rational expectations, on the other. Wide departures from these are commonly observed, and there are thus, respectively, two main sets of challenges.
As discussed, the assumptions that market prices follow a random walk and that asset returns are normally distributed are fundamental. Empirical evidence, however, suggests that these assumptions may not hold, and that in practice, traders, analysts and risk managers frequently modify the "standard models" (see Kurtosis risk, Skewness risk, Long tail, Model risk). In fact, Benoit Mandelbrot had discovered already in the 1960s that changes in financial prices do not follow a normal distribution, the basis for much option pricing theory, although this observation was slow to find its way into mainstream financial economics.
Financial models with longtailed distributions and volatility clustering have been introduced to overcome problems with the realism of the above "classical" financial models; while jump diffusion models allow for (option) pricing incorporating "jumps" in the spot price.^{[40]} Risk managers, similarly, complement (or substitute) the standard value at risk models with historical simulations, mixture models, principal component analysis, extreme value theory, as well as models for volatility clustering.^{[41]} For further discussion see Fattailed distribution § Applications in economics, and Value at risk § Criticism. Portfolio managers, likewise, have modified their optimization criteria and algorithms; see #Portfolio theory above.
Closely related is the volatility smile, where, as above, implied volatility — the volatility corresponding to the BSM price — is observed to differ as a function of strike price (i.e. moneyness), true only if the pricechange distribution is nonnormal, unlike that assumed by BSM. The term structure of volatility describes how (implied) volatility differs for related options with different maturities. An implied volatility surface is then a threedimensional surface plot of volatility smile and term structure. These empirical phenomena negate the assumption of constant volatility—and lognormality—upon which Black–Scholes is built.^{[22]}^{[40]} Within institutions, the function of BlackScholes is now, largely, to communicate prices via implied volatilities, much like bond prices are communicated via YTM; see Black–Scholes model § The volatility smile.
In consequence traders (and risk managers) now, instead, use "smileconsistent" models, firstly, when valuing derivatives not directly mapped to the surface, facilitating the pricing of other, i.e. nonquoted, strike/maturity combinations, or of nonEuropean derivatives, and generally for hedging purposes. The two main approaches are local volatility and stochastic volatility. The first returns the volatility which is “local” to each spottime point of the finite difference or simulationbased valuation; i.e. as opposed to implied volatility, which holds overall. In this way calculated prices — and numeric structures — are marketconsistent in an arbitragefree sense. The second approach assumes that the volatility of the underlying price is a stochastic process rather than a constant. Models here are first calibrated to observed prices, and are then applied to the valuation or hedging in question; the most common are Heston, SABR and CEV. This approach addresses certain problems identified with hedging under local volatility.^{[42]}
Related to local volatility are the latticebased impliedbinomial and trinomial trees — essentially a discretization of the approach — which are similarly (but less commonly) used for pricing; these are built on stateprices recovered from the surface. Edgeworth binomial trees allow for a specified (i.e. nonGaussian) skew and kurtosis in the spot price; priced here, options with differing strikes will return differing implied volatilities, and the tree can be calibrated to the smile as required.^{[43]} Similarly purposed (and derived) closedform models have also been developed.^{[44]}
As discussed, additional to assuming lognormality in returns, "classical" BSMtype models also (implicitly) assume the existence of a creditriskfree environment, where one can perfectly replicate cashflows so as to fully hedge, and then discount at "the" riskfreerate. And therefore, post crisis, the various xvalue adjustments must be employed, effectively correcting the riskneutral value for counterparty and fundingrelated risk. These xVA are additional to any smile or surface effect. This is valid as the surface is built on price data relating to fully collateralized positions, and there is therefore no "double counting" of credit risk (etc.) when appending xVA. (Were this not the case, then each counterparty would have its own surface...)
As mentioned at top, mathematical finance (and particularly financial engineering) is more concerned with mathematical consistency (and market realities) than compatibility with economic theory, and the above "extreme event" approaches, smileconsistent modeling, and valuation adjustments should then be seen in this light. Recognizing this, James Rickards, amongst other critics of financial economics, suggests that, instead, the theory needs revisiting almost entirely:
Market anomalies and Economic puzzles 
As seen, a common assumption is that financial decision makers act rationally; see Homo economicus. Recently, however, researchers in experimental economics and experimental finance have challenged this assumption empirically. These assumptions are also challenged theoretically, by behavioral finance, a discipline primarily concerned with the limits to rationality of economic agents.
Consistent with, and complementary to these findings, various persistent market anomalies have been documented, these being price or return distortions—e.g. size premiums—which appear to contradict the efficientmarket hypothesis; calendar effects are the best known group here. Related to these are various of the economic puzzles, concerning phenomena similarly contradicting the theory. The equity premium puzzle, as one example, arises in that the difference between the observed returns on stocks as compared to government bonds is consistently higher than the risk premium rational equity investors should demand, an "abnormal return". For further context see Random walk hypothesis § A nonrandom walk hypothesis, and sidebar for specific instances.
More generally, and particularly following the financial crisis of 2007–2008, financial economics and mathematical finance have been subjected to deeper criticism; notable here is Nassim Nicholas Taleb, who claims that the prices of financial assets cannot be characterized by the simple models currently in use, rendering much of current practice at best irrelevant, and, at worst, dangerously misleading; see Black swan theory, Taleb distribution. A topic of general interest has thus been financial crises, ^{[46]} and the failure of (financial) economics to model (and predict) these.
A related problem is systemic risk: where companies hold securities in each other then this interconnectedness may entail a "valuation chain"—and the performance of one company, or security, here will impact all, a phenomenon not easily modeled, regardless of whether the individual models are correct. See: Systemic risk § Inadequacy of classic valuation models; Cascades in financial networks; Flighttoquality.
Areas of research attempting to explain (or at least model) these phenomena, and crises, include^{[11]} noise trading, market microstructure, and Heterogeneous agent models. The latter is extended to agentbased computational economics, where price is treated as an emergent phenomenon, resulting from the interaction of the various market participants (agents). The noisy market hypothesis argues that prices can be influenced by speculators and momentum traders, as well as by insiders and institutions that often buy and sell stocks for reasons unrelated to fundamental value; see Noise (economic). The adaptive market hypothesis is an attempt to reconcile the efficient market hypothesis with behavioral economics, by applying the principles of evolution to financial interactions. An information cascade, alternatively, shows market participants engaging in the same acts as others ("herd behavior"), despite contradictions with their private information. Copulabased modelling has similarly been applied. See also Hyman Minsky's "financial instability hypothesis", as well as George Soros' approach under § Reflexivity, financial markets, and economic theory.
Various studies have shown that despite these departures from efficiency, asset prices do typically exhibit a random walk and that one cannot therefore consistently outperform market averages (attain "alpha").^{[47]} The practical implication, therefore, is that passive investing (e.g. via lowcost index funds) should, on average, serve better than any other active strategy.^{[48]} Burton Malkiel's A Random Walk Down Wall Street—first published in 1973, and in its 12th edition as of 2019—is a widely read popularization of these arguments. (See also John C. Bogle's Common Sense on Mutual Funds; but compare Warren Buffett's The Superinvestors of GrahamandDoddsville.) Institutionally inherent limits to arbitrage—as opposed to factors directly contradictory to the theory—are sometimes proposed as an explanation for these departures from efficiency.
Financial economics
Asset pricing
Corporate finance