康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..
Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumentase que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..
Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..
沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。
希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年前687年；另一種是前716年前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..
The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..
兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。
Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..
Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..
第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..
Evolutionarily stable strategy  

A solution concept in game theory  
Relationship  
Subset of  Nash equilibrium 
Superset of  Stochastically stable equilibrium, Stable Strong Nash equilibrium 
Intersects with  Subgame perfect equilibrium, Trembling hand perfect equilibrium, Perfect Bayesian equilibrium 
Significance  
Proposed by  John Maynard Smith and George R. Price 
Used for  Biological modeling and Evolutionary game theory 
Example  Hawkdove 
An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) which, if adopted by a population in a given environment, is impenetrable, meaning that it cannot be invaded by any alternative strategy (or strategies) that are initially rare. It is relevant in game theory, behavioural ecology, and evolutionary psychology. An ESS is an equilibrium refinement of the Nash equilibrium. It is a Nash equilibrium that is "evolutionarily" stable: once it is fixed in a population, natural selection alone is sufficient to prevent alternative (mutant) strategies from invading successfully. The theory is not intended to deal with the possibility of gross external changes to the environment that bring new selective forces to bear.
First published as a specific term in the 1972 book by John Maynard Smith,^{[1]} the ESS is widely used in behavioural ecology and economics, and has been used in anthropology, evolutionary psychology, philosophy, and political science.
Evolutionarily stable strategies were defined and introduced by John Maynard Smith and George R. Price in a 1973 Nature paper.^{[2]} Such was the time taken in peerreviewing the paper for Nature that this was preceded by a 1972 essay by Maynard Smith in a book of essays titled On Evolution.^{[1]} The 1972 essay is sometimes cited instead of the 1973 paper, but university libraries are much more likely to have copies of Nature. Papers in Nature are usually short; in 1974, Maynard Smith published a longer paper in the Journal of Theoretical Biology.^{[3]} Maynard Smith explains further in his 1982 book Evolution and the Theory of Games.^{[4]} Sometimes these are cited instead. In fact, the ESS has become so central to game theory that often no citation is given, as the reader is assumed to be familiar with it.
Maynard Smith mathematically formalised a verbal argument made by Price, which he read while peerreviewing Price's paper. When Maynard Smith realized that the somewhat disorganised Price was not ready to revise his article for publication, he offered to add Price as coauthor.
The concept was derived from R. H. MacArthur^{[5]} and W. D. Hamilton's^{[6]} work on sex ratios, derived from Fisher's principle, especially Hamilton's (1967) concept of an unbeatable strategy. Maynard Smith was jointly awarded the 1999 Crafoord Prize for his development of the concept of evolutionarily stable strategies and the application of game theory to the evolution of behaviour.^{[7]}
Uses of ESS:
The Nash equilibrium is the traditional solution concept in game theory. It depends on the cognitive abilities of the players. It is assumed that players are aware of the structure of the game and consciously try to predict the moves of their opponents and to maximize their own payoffs. In addition, it is presumed that all the players know this (see common knowledge). These assumptions are then used to explain why players choose Nash equilibrium strategies.
Evolutionarily stable strategies are motivated entirely differently. Here, it is presumed that the players' strategies are biologically encoded and heritable. Individuals have no control over their strategy and need not be aware of the game. They reproduce and are subject to the forces of natural selection, with the payoffs of the game representing reproductive success (biological fitness). It is imagined that alternative strategies of the game occasionally occur, via a process like mutation. To be an ESS, a strategy must be resistant to these alternatives.
Given the radically different motivating assumptions, it may come as a surprise that ESSes and Nash equilibria often coincide. In fact, every ESS corresponds to a Nash equilibrium, but some Nash equilibria are not ESSes.
An ESS is a refined or modified form of a Nash equilibrium. (See the next section for examples which contrast the two.) In a Nash equilibrium, if all players adopt their respective parts, no player can benefit by switching to any alternative strategy. In a two player game, it is a strategy pair. Let E(S,T) represent the payoff for playing strategy S against strategy T. The strategy pair (S, S) is a Nash equilibrium in a two player game if and only if this is true for both players and for all T≠S:
In this definition, strategy T can be a neutral alternative to S (scoring equally well, but not better). A Nash equilibrium is presumed to be stable even if T scores equally, on the assumption that there is no longterm incentive for players to adopt T instead of S. This fact represents the point of departure of the ESS.
Maynard Smith and Price^{[2]} specify two conditions for a strategy S to be an ESS. For all T≠S, either
The first condition is sometimes called a strict Nash equilibrium.^{[9]} The second is sometimes called "Maynard Smith's second condition". The second condition means that although strategy T is neutral with respect to the payoff against strategy S, the population of players who continue to play strategy S has an advantage when playing against T.
There is also an alternative, stronger definition of ESS, due to Thomas.^{[10]} This places a different emphasis on the role of the Nash equilibrium concept in the ESS concept. Following the terminology given in the first definition above, this definition requires that for all T≠S
In this formulation, the first condition specifies that the strategy is a Nash equilibrium, and the second specifies that Maynard Smith's second condition is met. Note that the two definitions are not precisely equivalent: for example, each pure strategy in the coordination game below is an ESS by the first definition but not the second.
In words, this definition looks like this: The payoff of the first player when both players play strategy S is higher than (or equal to) the payoff of the first player when he changes to another strategy T and the second player keeps his strategy S and the payoff of the first player when only his opponent changes his strategy to T is higher than his payoff in case that both of players change their strategies to T.
This formulation more clearly highlights the role of the Nash equilibrium condition in the ESS. It also allows for a natural definition of related concepts such as a weak ESS or an evolutionarily stable set.^{[10]}


In most simple games, the ESSes and Nash equilibria coincide perfectly. For instance, in the prisoner's dilemma there is only one Nash equilibrium, and its strategy (Defect) is also an ESS.
Some games may have Nash equilibria that are not ESSes. For example, in harm thy neighbor (whose payoff matrix is shown here) both (A, A) and (B, B) are Nash equilibria, since players cannot do better by switching away from either. However, only B is an ESS (and a strong Nash). A is not an ESS, so B can neutrally invade a population of A strategists and predominate, because B scores higher against B than A does against B. This dynamic is captured by Maynard Smith's second condition, since E(A, A) = E(B, A), but it is not the case that E(A,B) > E(B,B).


Nash equilibria with equally scoring alternatives can be ESSes. For example, in the game Harm everyone, C is an ESS because it satisfies Maynard Smith's second condition. D strategists may temporarily invade a population of C strategists by scoring equally well against C, but they pay a price when they begin to play against each other; C scores better against D than does D. So here although E(C, C) = E(D, C), it is also the case that E(C,D) > E(D,D). As a result, C is an ESS.
Even if a game has pure strategy Nash equilibria, it might be that none of those pure strategies are ESS. Consider the Game of chicken. There are two pure strategy Nash equilibria in this game (Swerve, Stay) and (Stay, Swerve). However, in the absence of an uncorrelated asymmetry, neither Swerve nor Stay are ESSes. There is a third Nash equilibrium, a mixed strategy which is an ESS for this game (see Hawkdove game and Best response for explanation).
This last example points to an important difference between Nash equilibria and ESS. Nash equilibria are defined on strategy sets (a specification of a strategy for each player), while ESS are defined in terms of strategies themselves. The equilibria defined by ESS must always be symmetric, and thus have fewer equilibrium points.
In population biology, the two concepts of an evolutionarily stable strategy (ESS) and an evolutionarily stable state are closely linked but describe different situations.
In an evolutionarily stable strategy, if all the members of a population adopt it, no mutant strategy can invade.^{[4]} Once virtually all members of the population use this strategy, there is no 'rational' alternative. ESS is part of classical game theory.
In an evolutionarily stable state, a population's genetic composition is restored by selection after a disturbance, if the disturbance is not too large. An evolutionarily stable state is a dynamic property of a population that returns to using a strategy, or mix of strategies, if it is perturbed from that initial state. It is part of population genetics, dynamical system, or evolutionary game theory. This is now called convergent stability.^{[11]}
B. Thomas (1984) applies the term ESS to an individual strategy which may be mixed, and evolutionarily stable population state to a population mixture of pure strategies which may be formally equivalent to the mixed ESS.^{[12]}
Whether a population is evolutionarily stable does not relate to its genetic diversity: it can be genetically monomorphic or polymorphic.^{[4]}
In the classic definition of an ESS, no mutant strategy can invade. In finite populations, any mutant could in principle invade, albeit at low probability, implying that no ESS can exist. In an infinite population, an ESS can instead be defined as a strategy which, should it become invaded by a new mutant strategy with probability p, would be able to counterinvade from a single starting individual with probability >p, as illustrated by the evolution of bethedging.^{[13]}
Cooperate  Defect  
Cooperate  3, 3  1, 4 
Defect  4, 1  2, 2 
Prisoner's Dilemma 
A common model of altruism and social cooperation is the Prisoner's dilemma. Here a group of players would collectively be better off if they could play Cooperate, but since Defect fares better each individual player has an incentive to play Defect. One solution to this problem is to introduce the possibility of retaliation by having individuals play the game repeatedly against the same player. In the socalled iterated Prisoner's dilemma, the same two individuals play the prisoner's dilemma over and over. While the Prisoner's dilemma has only two strategies (Cooperate and Defect), the iterated Prisoner's dilemma has a huge number of possible strategies. Since an individual can have different contingency plan for each history and the game may be repeated an indefinite number of times, there may in fact be an infinite number of such contingency plans.
Three simple contingency plans which have received substantial attention are Always Defect, Always Cooperate, and Tit for Tat. The first two strategies do the same thing regardless of the other player's actions, while the latter responds on the next round by doing what was done to it on the previous round—it responds to Cooperate with Cooperate and Defect with Defect.
If the entire population plays TitforTat and a mutant arises who plays Always Defect, TitforTat will outperform Always Defect. If the population of the mutant becomes too large — the percentage of the mutant will be kept small. Tit for Tat is therefore an ESS, with respect to only these two strategies. On the other hand, an island of Always Defect players will be stable against the invasion of a few TitforTat players, but not against a large number of them.^{[14]} If we introduce Always Cooperate, a population of TitforTat is no longer an ESS. Since a population of TitforTat players always cooperates, the strategy Always Cooperate behaves identically in this population. As a result, a mutant who plays Always Cooperate will not be eliminated. However, even though a population of Always Cooperate and TitforTat can coexist, if there is a small percentage of the population that is Always Defect, the selective pressure is against Always Cooperate, and in favour of TitforTat. This is due to the lower payoffs of cooperating than those of defecting in case the opponent defects.
This demonstrates the difficulties in applying the formal definition of an ESS to games with large strategy spaces, and has motivated some to consider alternatives.
The fields of sociobiology and evolutionary psychology attempt to explain animal and human behavior and social structures, largely in terms of evolutionarily stable strategies. Sociopathy (chronic antisocial or criminal behavior) may be a result of a combination of two such strategies.^{[15]}
Evolutionarily stable strategies were originally considered for biological evolution, but they can apply to other contexts. In fact, there are stable states for a large class of adaptive dynamics. As a result, they can be used to explain human behaviours that lack any genetic influences.