This is a video about (170705) 주간 아이돌 310회 블랙핑크 (BLACKPINK) - Weekly idol ep 310 BLACKPINK
主要支援:已於2009年4月8日到期 延伸支援:已於2014年4月8日到期(仅限Service Pack 3 x86(SP3 x86)及Service Pack 2 x64(SP2 x64)) 新增的功能 移除的功能 版本 开发历史 批評 主题 Windows XP(开发代号:)是微软公司推出供个人电脑使用的操作系统,包括商用及家用的桌上型电脑、笔记本电脑、媒体中心(英语:)和平板电脑等。其RTM版于2001年8月24日发布;零售版于2001年10月25日上市。其名字「」的意思是英文中的「体验」()。Windows ..
Nov 13, 2019- Explore dobdan222's board "교복", followed by 405 people on Pinterest. See more ideas about Asian girl, Korean student and Fashion.
Nov 10, 2019- Explore cutebear36088's board "여고딩", followed by 557 people on Pinterest. See more ideas about School looks, Fashion and School uniform.
Republika obeh narodov Habsburška monarhija Bavarska Saška Franconia Švabska Zaporoški kozaki Velika vojvodina Toskana Drugo obleganje Dunaja je potekalo leta 1683; pričelo se je 14. julija 1683, ko je Osmanski imperij obkolil Dunaj in končalo 11. septembra ..
Robert Henry Goldsborough (January 4, 1779 – October 5, 1836) was an American politician from Talbot County, Maryland. Goldsborough was born at "Myrtle Grove" near Easton, Maryland. He was educated by private tutors and graduated from St. John's College in ..
Anabolic steroids, also known more properly as anabolic–androgenic steroids (AAS), are steroidal androgens that include natural androgens like testosterone as well as synthetic androgens that are structurally related and have similar effects to testosterone. ..
The El Farol bar problem is a problem in game theory. Every Thursday night, a fixed population want to go have fun at the El Farol Bar, unless it's too crowded.
Everyone must decide at the same time whether to go or not, with no knowledge of others' choices.
Paradoxically, if everyone uses a deterministic pure strategy which is symmetric (same strategy for all players), it is guaranteed to fail no matter what it is. If the strategy suggests it will not be crowded, everyone will go, and thus it will be crowded; but if the strategy suggests it will be crowded, nobody will go, and thus it will not be crowded, but again no one will have fun. Better success is possible with a probablistic mixed strategy. For the single-stage El Farol Bar problem, there exists a unique symmetric Nash equilibrium mixed strategy where all players choose to go to the bar with a certain probability, determined according to the number of players, the threshold for crowdedness, and the relative utility of going to a crowded or uncrowded bar compared to staying home. There are also multiple Nash equilibria in which one or more players use a pure strategy, but these equilibria are not symmetric.[1] Several variants are considered in Game Theory Evolving by Herbert Gintis.[2]
In some variants of the problem, the players are allowed to communicate before deciding to go to the bar. However, they are not required to tell the truth.
Based on a bar in Santa Fe, New Mexico, the problem was created in 1994 by W. Brian Arthur. However, under another name, the problem was formulated and solved dynamically six years earlier by B. A. Huberman and T. Hogg.[3]
A variant is the Minority Game proposed by Yi-Cheng Zhang and Damien Challet from the University of Fribourg.[4] An odd number of players each must make a binary choice independently at each turn, and the winners are those players who end up on the minority side. As in the El Farol Bar problem, no single (symmetric) deterministic strategy can give an equilibrium, but for mixed strategies there is a unique symmetric Nash equilibrium (each player chooses with 50% probability), as well as multiple non-symmetric equilibria.
A multi-stage, cooperative Minority Game was featured in the manga Liar Game, in which the majority was repeatedly eliminated until only one player was left.
Another variant of the El Farol Bar problem is the Kolkata Paise Restaurant Problem,[5][6][7][8][9][10] named for the many cheap restaurants where laborers can grab a quick lunch, but may have to return to work hungry if their chosen restaurant is too crowded. Formally, a large number N of players each choose one of a large number n of restaurants, typically N = n (while in the El Farol Bar Problem, n = 2, including the stay-home option). At each restaurant, one customer at random is served lunch (payoff = 1) while all others lose (payoff = 0). The players do not know each others' choices on a given day, but the game is repeated daily, and the history of all players' choices is available to everyone. Optimally, each player chooses a different restaurant, but this is practically impossible without coordination, resulting in both hungry customers and unattended restaurants wasting capacity.
Strategies are evaluated based on their aggregate payoff and/or the proportion of attended restaurants (utilization ratio). A leading stochastic strategy, with utilization ~0.79, gives each customer a probability p of choosing the same restaurant as yesterday (p varying inversely with the number of players who chose that restaurant yesterday), while choosing among other restaurants with uniform probability. This is a better result than deterministic algorithms or simple random choice (noise trader), with utilization fraction 1 - 1/e ≈ 0.63.
In a similar problem, there are hospital beds in every locality, but patients are tempted to go to prestigious hospitals out of their district. However, if too many patients go to a prestige hospital, some get no hospital bed at all, while additionally wasting the unused beds at their local hospitals.
|journal=
(help)