康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

In game theory, **cheap talk** is communication between players that does not directly affect the payoffs of the game. Providing and receiving information is free. This is in contrast to signaling in which sending certain messages may be costly for the sender depending on the state of the world.

One actor has information and the other has ability to act. The informed player can choose strategically what to say and what not to say. Things become interesting when the interests of the players are not aligned. The classic example is of an expert (say, an ecologist) trying to explain the state of the world to an uninformed decision maker (say, politician voting on a deforestation bill). The decision maker, after hearing the report from the expert, must then make a decision which affects the payoffs of both players.

This basic setting set by Crawford and Sobel^{[1]} has given rise to a variety of variants.

To give a formal definition, cheap talk is communication that is:^{[2]}

- costless to transmit and receive
- non-binding (i.e. does not limit strategic choices by either party)
- unverifiable (i.e. cannot be verified by a third party like a court)

Therefore, an agent engaging in cheap talk could lie with impunity, but may choose in equilibrium not to do so.

In the basic form of the game, there are two players communicating, one sender *S* and one receiver *R*.

**Type.**
Sender *S* gets knowledge of the state of the world or of his "type" *t*. Receiver *R* does not know *t* ; he has only ex-ante beliefs about it, and relies on a message from *S* to possibly improve the accuracy of his beliefs.

**Message.**
*S* decides to send message *m*. Message *m* may disclose full information, but it may also give limited, blurred information: it will typically say "The state of the world is between *t _{1}* and

The form of the message does not matter, as long as there is mutual understanding, common interpretation. It could be a general statement from a central bank's chairman, a political speech in any language, etc. Whatever the form, it is eventually taken to mean "The state of the world is between *t _{1}* and

**Action.**
Receiver *R* receives message *m*. *R* updates his beliefs about the state of the world given new information that he might get, using Bayes's rule. *R* decides to take action *a*. This action impacts both his own utility and the sender's utility.

**Utility.**
The decision of *S* regarding the content of *m* is based on maximizing his utility, given what he expects *R* to do. Utility is a way to quantify satisfaction or wishes. It can be financial profits, or non-financial satisfaction—for instance the extent to which the environment is protected.

→ Quadratic utilities:The respective utilities of

SandRcan be specified by the following:The theory applies to more general forms of utility, but quadratic preferences makes exposition easier. Thus

SandRhave different objectives ifb ≠ 0. Parameterbis interpreted asconflict of interestbetween the two players, or alternatively as bias.

Uis maximized when^{R}a = t, meaning that the receiver wants to take action that matches the state of the world, which he does not know in general.Uis maximized when^{S}a = t + b, meaning thatSwants a slightly higher action to be taken. SinceSdoes not control action,Smust obtain the desired action by choosing what information to reveal. Each player’s utility depends on the state of the world and on both players’ decisions that eventually lead to actiona.

**Nash equilibrium.**
We look for an equilibrium where each player decides optimally, assuming that the other player also decides optimally. Players are rational, although *R* has only limited information. Expectations get realized, and there is no incentive to deviate from this situation.

Crawford and Sobel characterize possible Nash equilibria.

- There are typically
**multiple equilibria**, but in a finite number. **Separating**, which means full information revelation, is not a Nash equilibrium.**Babbling**, which means no information transmitted, is always an equilibrium outcome.

When interests are aligned, then information is fully disclosed. When conflict of interest is very large, all information is kept hidden. These are extreme cases. The model allowing for more subtle case when interests are close, but different and in these cases optimal behavior leads to some but not all information being disclosed, leading to various kinds of carefully worded sentences that we may observe.

More generally :

- There exists
Nsuch that for all^{*}> 0Nwith1 ≤ N ≤ N,^{*}- there exists at least an equilibrium in which the set of induced actions has cardinality
N; and moreover- there is no equilibrium that induces more than
Nactions.^{*}

**Messages.**
While messages could ex-ante assume an infinite number of possible values *µ(t)* for the infinite number of possible states of the world *t*, actually they may take only a finite number of values *(m _{1}, m_{2}, . . . , m_{N})*.

Thus an equilibrium may be characterized by a partition *(t _{0}(N), t_{1}(N). . . t_{N}(N))* of the set of types [0, 1],
where

The *t _{i}(N)*’s are the bounds of intervals where the messages are constant: for

**Actions.**
Since actions are functions of messages, actions are also constant over these intervals:
for *t _{i-1}(N) < t < t_{i}(N)*,

The action function is now indirectly characterized by the fact that each value *a _{i}* optimizes return for the

→

Quadratic utilities:Given that

Rknows thattis betweentand_{i-1}t, and in the special case quadratic utility where_{i}Rwants actionato be as close totas possible, we can show that quite intuitively the optimal action is the middle of the interval:

**Indifference condition.**
What happens at *t = t _{i}*? The sender has to be indifferent between sending either message

This gives information about *N* and the *t _{i}*.

→ Practically:We consider a partition of size

N.One can show that

Nmust be small enough so that the numerator is positive. This determines the maximum allowed valuewhere is the ceiling of , i.e. the smallest positive integer greater or equal to . Example: We assume that

b = 1/20. ThenN. We now describe all the equilibria for^{*}= 3N=1,2, or3(see Figure 2).

This is the babbling equilibrium.N = 1:t;_{0}= 0, t_{1}= 1a._{1}= 1/2 = 0.5

N = 2:t;_{0}= 0, t_{1}= 2/5 = 0.4, t_{2}= 1a._{1}= 1/5 = 0.2, a_{2}= 7/10 = 0.7

N = N^{*}= 3:t;_{0}= 0, t_{1}= 2/15, t_{2}= 7/15, t_{3}= 1a._{1}= 1/15, a_{2}= 3/10 = 0.3, a_{3}= 11/15

With

N = 1, we get thecoarsestpossible message, which does not give any information. So everything is red on the top left panel. WithN = 3, the message isfiner. However, it remains quite coarse compared to full revelation, which would be the 45° line, but which is not a Nash equilibrium.

With a higher

N, and a finer message, the blue area is more important. This implies higher utility. Disclosing more information benefits both parties.

Cheap talk can, in general, be added to any game and has the potential to enhance the set of possible equilibrium outcomes. For example, one can add a round of cheap talk in the beginning of the Battle of the Sexes. Each player announces whether they intend to go to the football game, or the opera. Because the Battle of the Sexes is a coordination game, this initial round of communication may enable the players to select among multiple equilibria, thereby achieving higher payoffs than in the uncoordinated case. The messages and strategies which yield this outcome are symmetric for each player. They are: 1) announce opera or football with even probability 2) if a person announces opera (or football), then upon hearing this message the other person will say opera (or football) as well (Farrell and Rabin, 1996). If they both announce different options, then no coordination is achieved. In the case of only one player messaging, this could also give that player a first-mover advantage.

It is not guaranteed, however, that cheap talk will have an effect on equilibrium payoffs. Another game, the Prisoner's Dilemma, is a game whose only equilibrium is in dominant strategies. Any pre-play cheap talk will be ignored and players will play their dominant strategies (Defect, Defect) regardless of the messages sent.

It has been commonly argued that cheap talk will have no effect on the underlying structure of the game. In biology authors have often argued that costly signalling best explains signalling between animals (see Handicap principle, Signalling theory). This general belief has been receiving some challenges (see work by Carl Bergstrom^{[3]} and Brian Skyrms 2002, 2004). In particular, several models using evolutionary game theory indicate that cheap talk can have effects on the evolutionary dynamics of particular games.

- ↑ Crawford, Vincent P.; Sobel, Joel (November 1982). "Strategic Information Transmission".
*Econometrica*.**50**(6): 1431–1451. CiteSeerX 10.1.1.295.3462. doi:10.2307/1913390. JSTOR 1913390. - ↑ Farrell, Joseph (1987). "Cheap Talk, Coordination, and Entry".
*The RAND Journal of Economics*.**18**(1): 34–39. doi:10.2307/2555533. JSTOR 2555533. - ↑ "
*The Biology of Information*". Archived from the original on 2005-03-04. Retrieved 2005-03-17.

- Crawford, V. P.; Sobel, J. (1982). "Strategic Information Transmission".
*Econometrica*.**50**(6): 1431–1451. CiteSeerX 10.1.1.461.9770. doi:10.2307/1913390. JSTOR 1913390. - Farrell, J.; Rabin, M. (1996). "Cheap Talk".
*Journal of Economic Perspectives*.**10**(3): 103–118. doi:10.1257/jep.10.3.103. JSTOR 2138522. - Robson, A. J. (1990). "Efficiency in Evolutionary Games: Darwin, Nash, and the Secret Handshake" (PDF).
*Journal of Theoretical Biology*.**144**(3): 379–396. doi:10.1016/S0022-5193(05)80082-7. PMID 2395377. - Skyrms, B. (2002). "Signals, Evolution and the Explanatory Power of Transient Information".
*Philosophy of Science*.**69**(3): 407–428. doi:10.1086/342451. - Skyrms, B. (2004).
*The Stag Hunt and the Evolution of Social Structure*. New York: Cambridge University Press. ISBN 0-521-82651-9.

© 2019 raptorfind.com. Imprint, All rights reserved.