康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

In game theory, the **centipede game**, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round. Although the traditional centipede game had a limit of 100 rounds (hence the name), any game with this structure but a different number of rounds is called a centipede game.

The unique subgame perfect equilibrium (and every Nash equilibrium) of these games indicates that the first player take the pot on the very first round of the game; however, in empirical tests, relatively few players do so, and as a result, achieve a higher payoff than the payoff predicted by the equilibria analysis. These results are taken to show that subgame perfect equilibria and Nash equilibria fail to predict human play in some circumstances. The Centipede game is commonly used in introductory game theory courses and texts to highlight the concept of backward induction and the iterated elimination of dominated strategies, which show a standard way of providing a solution to the game.

One possible version of a centipede game could be played as follows:

Consider two players: Alice and Bob. Alice moves first. At the start of the game, Alice has two piles of coins in front of her: one pile contains 4 coins and the other pile contains 1 coin. Each player has two moves available: either "take" the larger pile of coins and give the smaller pile to the other player or "push" both piles across the table to the other player. Each time the piles of coins pass across the table, the quantity of coins in each pile doubles. For example, assume that Alice chooses to "push" the piles on her first move, handing the piles of 1 and 4 coins over to Bob, doubling them to 2 and 8. Bob could now use his first move to either "take" the pile of 8 coins and give 2 coins to Alice, or he can "push" the two piles back across the table again to Alice, again increasing the size of the piles to 4 and 16 coins. The game continues for a fixed number of rounds or until a player decides to end the game by pocketing a pile of coins.

The addition of coins is taken to be an externality, as it is not contributed by either player.

The centipede game may be written as where and . Players and alternate, starting with player , and may on each turn play a move from with a maximum of rounds. The game terminates when is played for the first time, otherwise upon moves, if is never played.

Suppose the game ends on round with player making the final move. Then the outcome of the game is defined as follows:

- If played , then gains coins and gains .
- If played , then gains coins and gains .

Here, denotes the other player.

Standard game theoretic tools predict that the first player will defect on the first round, taking the pile of coins for himself. In the centipede game, a pure strategy consists of a set of actions (one for each choice point in the game, even though some of these choice points may never be reached) and a mixed strategy is a probability distribution over the possible pure strategies. There are several pure strategy Nash equilibria of the centipede game and infinitely many mixed strategy Nash equilibria. However, there is only one subgame perfect equilibrium (a popular refinement to the Nash equilibrium concept).

In the unique subgame perfect equilibrium, each player chooses to defect at every opportunity. This, of course, means defection at the first stage. In the Nash equilibria, however, the actions that would be taken after the initial choice opportunities (even though they are never reached since the first player defects immediately) may be cooperative.

Defection by the first player is the unique subgame perfect equilibrium and required by any Nash equilibrium, it can be established by backward induction. Suppose two players reach the final round of the game; the second player will do better by defecting and taking a slightly larger share of the pot. Since we suppose the second player will defect, the first player does better by defecting in the second to last round, taking a slightly higher payoff than she would have received by allowing the second player to defect in the last round. But knowing this, the second player ought to defect in the third to last round, taking a slightly higher payoff than he would have received by allowing the first player to defect in the second to last round. This reasoning proceeds backwards through the game tree until one concludes that the best action is for the first player to defect in the first round. The same reasoning can apply to any node in the game tree.

For a game that ends after four rounds, this reasoning proceeds as follows. If we were to reach the last round of the game, Player *2* would do better by choosing *d* instead of *r*, receiving 4 coins instead of 3. However, given that *2* will choose *d*, *1* should choose *D* in the second to last round, receiving 3 instead of 2. Given that *1* would choose *D* in the second to last round, *2* should choose *d* in the third to last round, receiving 2 instead of 1. But given this, Player *1* should choose *D* in the first round, receiving 1 instead of 0.

There are a large number of Nash equilibria in a centipede game, but in each, the first player defects on the first round and the second player defects in the next round frequently enough to dissuade the first player from passing. Being in a Nash equilibrium does not require that strategies be rational at **every point** in the game as in the subgame perfect equilibrium. This means that strategies that are cooperative in the never-reached later rounds of the game could still be in a Nash equilibrium. In the example above, one Nash equilibrium is for both players to defect on each round (even in the later rounds that are never reached). Another Nash equilibrium is for player 1 to defect on the first round, but pass on the third round and for player 2 to defect at any opportunity.

Several studies have demonstrated that the Nash equilibrium (and likewise, subgame perfect equilibrium) play is rarely observed. Instead, subjects regularly show partial cooperation, playing "R" (or "r") for several moves before eventually choosing "D" (or "d"). It is also rare for subjects to cooperate through the whole game. For examples see McKelvey and Palfrey (1992) and Nagel and Tang (1998). As in many other game theoretic experiments, scholars have investigated the effect of increasing the stakes. As with other games, for instance the ultimatum game, as the stakes increase the play approaches (but does not reach) Nash equilibrium play.^{[citation needed]}

Since the empirical studies have produced results that are inconsistent with the traditional equilibrium analysis, several explanations of this behavior have been offered. Rosenthal (1981) suggested that if one has reason to believe his opponent will deviate from Nash behavior, then it may be advantageous to not defect on the first round.

One reason to suppose that people may deviate from the equilibrium behavior is if some are altruistic. The basic idea is that if you are playing against an altruist, that person will always cooperate, and hence, to maximize your payoff you should defect on the last round rather than the first. If enough people are altruists, sacrificing the payoff of first-round defection is worth the price in order to determine whether or not your opponent is an altruist. Nagel and Tang (1998) suggest this explanation.

Another possibility involves error. If there is a significant possibility of error in action, perhaps because your opponent has not reasoned completely through the backward induction, it may be advantageous (and rational) to cooperate in the initial rounds.

However, Parco, Rapoport and Stein (2002) illustrated that the level of financial incentives can have a profound effect on the outcome in a three-player game: the larger the incentives are for deviation, the greater propensity for learning behavior in a repeated single-play experimental design to move toward the Nash equilibrium.

Palacios-Huerta and Volij (2009) find that expert chess players play differently from college students. With a rising Elo, the probability of continuing the game declines; all Grandmasters in the experiment stopped at their first chance. They conclude that chess players are familiar with using backward induction reasoning and hence need less learning to reach the equilibrium. However, in an attempt to replicate these findings, Levitt, List, and Sadoff (2010) find strongly contradictory results, with zero of sixteen Grandmasters stopping the game at the first node.

Like the Prisoner's Dilemma, this game presents a conflict between self-interest and mutual benefit. If it could be enforced, both players would prefer that they both cooperate throughout the entire game. However, a player's self-interest or players' distrust can interfere and create a situation where both do worse than if they had blindly cooperated. Although the Prisoner's Dilemma has received substantial attention for this fact, the Centipede Game has received relatively less.

Additionally, Binmore (2005) has argued that some real-world situations can be described by the Centipede game. One example he presents is the exchange of goods between parties that distrust each other. Another example Binmore (2005) likens to the Centipede game is the mating behavior of a hermaphroditic sea bass which takes turns exchanging eggs to fertilize. In these cases, we find cooperation to be abundant.

Since the payoffs for some amount of cooperation in the Centipede game are so much larger than immediate defection, the "rational" solutions given by backward induction can seem paradoxical. This, coupled with the fact that experimental subjects regularly cooperate in the Centipede game, has prompted debate over the usefulness of the idealizations involved in the backward induction solutions, see Aumann (1995, 1996) and Binmore (1996).

- Aumann, R. (1995). "Backward Induction and Common Knowledge of Rationality".
*Games and Economic Behavior*.**8**(1): 6–19. doi:10.1016/S0899-8256(05)80015-6. - ——— (1996). "A Reply to Binmore".
*Games and Economic Behavior*.**17**(1): 138–146. doi:10.1006/game.1996.0099. - Binmore, K. (2005).
*Natural Justice*. New York: Oxford University Press. ISBN 978-0-19-517811-1. - ——— (1996). "A Note on Backward Induction".
*Games and Economic Behavior*.**17**(1): 135–137. doi:10.1006/game.1996.0098. - Levitt, S. D.; List, J. A. & Sadoff, S. E. (2010). "Checkmate: Exploring Backward Induction Among Chess Players" (PDF).
*American Economic Review*.**101**(2): 975–990. doi:10.1257/aer.101.2.975. - McKelvey, R. & Palfrey, T. (1992). "An experimental study of the centipede game".
*Econometrica*.**60**(4): 803–836. CiteSeerX 10.1.1.295.2774. doi:10.2307/2951567. JSTOR 2951567. - Nagel, R. & Tang, F. F. (1998). "An Experimental Study on the Centipede Game in Normal Form: An Investigation on Learning".
*Journal of Mathematical Psychology*.**42**(2–3): 356–384. doi:10.1006/jmps.1998.1225. - Palacios-Huerta, I. & Volij, O. (2009). "Field Centipedes".
*American Economic Review*.**99**(4): 1619–1635. doi:10.1257/aer.99.4.1619. - Parco, J. E.; Rapoport, A. & Stein, W. E. (2002). "Effects of financial incentives on the breakdown of mutual trust".
*Psychological Science*.**13**(3): 292–297. CiteSeerX 10.1.1.612.8407. doi:10.1111/1467-9280.00454. PMID 12009054. - Rapoport, A.; Stein, W. E.; Parco, J. E. & Nicholas, T. E. (2003). "Equilibrium play and adaptive learning in a three-person centipede game".
*Games and Economic Behavior*.**43**(2): 239–265. doi:10.1016/S0899-8256(03)00009-5. - Rosenthal, R. (1981). "Games of Perfect Information, Predatory Pricing, and the Chain Store".
*Journal of Economic Theory*.**25**(1): 92–100. CiteSeerX 10.1.1.482.8534. doi:10.1016/0022-0531(81)90018-1.

- EconPort article on the Centipede Game
- Rationality and Game Theory - AMS column about the centipede game
- Online experiment in VeconLab
- Play the Centipede game in your browser on gametheorygame.nl

© 2019 raptorfind.com. Imprint, All rights reserved.