康尼島（英語：），又译科尼島，是位於美國紐約市布魯克林區的半島，原本為一座海島，其面向大西洋的海灘是美國知名的休閒娛樂區域。居民大多集中位於半島的西側，約有六萬人左右，範圍西至希捷社區，東至布萊登海灘和曼哈頓海灘，而北至葛瑞福山德社區。 二十世紀前葉在美國極為知名的太空星際樂園即是以康尼島作為主要的腹地，該樂園在二次大戰後開始衰退，並持續荒廢了許久。在最近幾年，康尼島因為凱斯班公園的開幕而重新繁榮起來，凱斯班公園是職棒小聯盟球隊布魯克林旋風的主要球場。旋風隊在當地十分受到歡迎，每季開賽時都會吸引許多球迷到場觀戰。 ..

Anjos da guarda são os anjos que segundo as crenças cristãs, Deus envia no nosso nascimento para nos proteger durante toda a nossa vida. Argumenta-se que a Bíblia sustenta em algumas ocasiões a crença do anjo da guarda: "Vou enviar um anjo adiante de ti para ..

Altay Cumhuriyeti (Rusça: Респу́блика Алта́й / Respublika Altay; Altay Türkçesi: Алтай Республика / Altay Respublika), Rusya'nın en güneyinde yer alan, federasyona bağlı bir özerk cumhuriyet. Orta Asya'da Asya kıtasının coğrafî merkezinin hemen kuzeyinde ve ..

沙羅週期長度為18年11天，本週期包含70次日食，其中公元3000年以前有49次。 註：下表各項數據均為食分最大地點的情況。寬度指該地點食甚時刻月球的本影（全食時）或偽本影（環食時）落在地表的寬度，持續時間指該地點食既到生光的時間，即全食或環食的持續時間，全環食（亦稱混合食）發生時，食分最大處為全食。最後兩項參數不適用於偏食。 本周期最終結束於3378年6月17日。

希西家王 (希伯來語：，英語：）是猶大末年的君主，也是猶大國歷史中極尊重上帝的君王，在位29年。終年54歲。他在位的年份有兩種說法：其一是前715年-前687年；另一種是前716年-前687年。他的德行在其前後的猶大列王中，没有一個能及他。其希伯來名字的意思是“被神加力量”。 希西家的父親亞哈斯是一個背逆上帝的君王。因此在希西家當政之初的猶大國，無論政治，宗教上都极其黑暗。根據《聖經》記載，因为北國以色列被亞述攻滅，亞述王可以趁勢来攻打猶大國；又猶大的先王亞哈斯曾封鎖了聖殿之路，引導舉國崇拜偶像，大大得罪上帝。若非上帝的憐憫，為了堅定向大衛家所說的應許，猶大國的暫得幸存。希西家在二十五歲就登基作王，且正在國家危急之秋，由於行耶和華上帝眼中看為正的事，因而得上帝的憐憫，得以成功脫離亞述大軍的攻擊和一場致死的大病。他樂於聽從當代先知以賽亞的指導，使他為上帝大發熱心。 ..

The OnePlus 2 (also abbreviated as OP2) is a smartphone designed by OnePlus. It is the successor to the OnePlus One. OnePlus revealed the phone on 28 July 2015 via virtual reality, using Google's Cardboard visor and their own app. OnePlus sold out 30,000 units ..

兴隆街镇，是中华人民共和国四川省内江市资中县下辖的一个乡镇级行政单位。 兴隆街镇下辖以下地区： 兴隆街社区、兴松村、玄天观村、三元村、金星村、三皇庙村、双桥村、红庙子村、华光村、高峰村、芦茅湾村、篮家坝村、五马村和解放村。

Национальная и университетская библиотека (словен. Narodna in univerzitetna knjižnica, NUK), основанная в 1774 году, — один из важнейших образовательных и культурных учреждений Словении. Она располагается в центре столицы Любляна, между улицами Турьяшка (Turjaška ..

Mauser M1924 (или M24) — серия винтовок компании Mauser, использовавшихся в армиях Бельгии и Югославии. Внешне напоминают чехословацкие винтовки vz. 24, в которых использовались стандартный открытый прицел, патроны калибра 7,92×57 мм (или 8×57 мм), укороченные ..

第三条道路（英語：），又称新中间路线（Middle Way），是一种走在自由放任资本主义和传统社会主义中间的一种政治经济理念的概称。它由中间派所倡导，是社会民主主义的一个流派，英国工党称其为「现代化的社会民主主义」。它的中心思想是既不主张纯粹的自由市场，也不主张纯粹的社會主義，主张在两者之间取折衷方案。 第三条道路不只单单是走在中间，或只是一种妥协或混合出来的东西，第三条道路的提倡者看到了社会主义和资本主义互有不足之处，所以偏向某一极端也不是一件好事，第三条道路正正是揉合了双方主义的优点，互补不足而成的政治哲学。 ..

The two-person **bargaining problem** studies how two agents share a surplus that they can jointly generate. It is in essence a payoff selection problem. In many cases, the surplus created by the two players can be shared in many ways, forcing the players to negotiate which division of payoffs to choose. There are two typical approaches to the bargaining problem. The normative approach studies how the surplus should be shared. It formulates appealing axioms that the solution to a bargaining problem should satisfy. The positive approach answers the question how the surplus will be shared. Under the positive approach, the bargaining procedure is modeled in detail as a non-cooperative game.

The **Nash bargaining solution** is the unique solution to a two-person bargaining problem that satisfies the axioms of scale invariance, symmetry, efficiency, and independence of irrelevant alternatives.
According to Walker,^{[1]} Nash's bargaining solution was shown by John Harsanyi to be the same as Zeuthen's solution^{[2]} of the bargaining problem.

The Nash bargaining game is a simple two-player game used to model bargaining interactions. In the Nash bargaining game, two players demand a portion of some good (usually some amount of money). If the total amount requested by the players is less than that available, both players get their request. If their total request is greater than that available, neither player gets their request.

Nash (1953) presents a non-cooperative demand game with two players who are uncertain about which payoff pairs are feasible. In the limit as the uncertainty vanishes, equilibrium payoffs converge to those predicted by the Nash bargaining solution.^{[3]}

Rubinstein also modelled bargaining as a non-cooperative game in which two players negotiate on the division of a surplus known as the alternating offers bargaining game.^{[4]} The players take turns acting as the proposer. The division of the surplus in the unique subgame perfect equilibrium depends upon how strongly players prefer current over future payoffs. In the limit as players become perfectly patient, the equilibrium division converges to the Nash bargaining solution.

For a comprehensive discussion of the Nash bargaining solution and the huge literature on the theory and application of bargaining - including a discussion of the classic Rubinstein bargaining model - see Abhinay Muthoo's book Bargaining Theory and Application.^{[5]}

A two-person bargain problem consists of:

- A feasibility set , a closed subset of that is often assumed to be convex, the elements of which are interpreted as agreements. is often assumed to be convex because, for any two feasible outcomes, a convex combination (a weighted average) of them is typically also feasible.
- A disagreement, or threat, point , where and are the respective payoffs to player 1 and player 2, which they are guaranteed to receive if they cannot come to a mutual agreement.

The problem is nontrivial if agreements in are better for both parties than the disagreement point. A solution to the bargaining problem selects an agreement in .

The feasible agreements typically include all possible joint actions, leading to a feasibility set that includes all possible payoffs. Often, the feasible set is restricted to include only payoffs that have a possibility of being better than the disagreement point for the agents that are bargaining.^{[3]}

The disagreement point is the value the players can expect to receive if negotiations break down. This could be some focal equilibrium that both players could expect to play. This point directly affects the bargaining solution, however, so it stands to reason that each player should attempt to choose his disagreement point in order to maximize his bargaining position. Towards this objective, it is often advantageous to increase one's own disagreement payoff while harming the opponent's disagreement payoff (hence the interpretation of the disagreement as a threat). If threats are viewed as actions, then one can construct a separate game wherein each player chooses a threat and receives a payoff according to the outcome of bargaining. It is known as Nash's variable threat game.

Strategies are represented in the Nash demand game by a pair (*x*, *y*). *x* and *y* are selected from the interval [*d*, *z*], where *d* is the disagreement outcome and *z* is the total amount of good. If *x* + *y* is equal to or less than *z*, the first player receives *x* and the second *y*. Otherwise both get *d*; often .

There are many Nash equilibria in the Nash demand game. Any *x* and *y* such that *x* + *y* = *z* is a Nash equilibrium. If either player increases their demand, both players receive nothing. If either reduces their demand they will receive less than if they had demanded *x* or *y*. There is also a Nash equilibrium where both players demand the entire good. Here both players receive nothing, but neither player can increase their return by unilaterally changing their strategy.

In Rubinstein's alternating offers bargaining game,^{[4]} players take turns acting as the proposer for splitting some surplus. The division of the surplus in the unique subgame perfect equilibrium depends upon how strongly players prefer current over future payoffs. In particular, let d be the discount factor, which refers to the rate at which players discount future earnings. That is, after each step the surplus is worth d times what it was worth previously. Rubinstein showed that if the surplus is normalized to 1, the payoff for player 1 in equilibrium is 1/(1+d), while the payoff for player 2 is d/(1+d). In the limit as players become perfectly patient, the equilibrium division converges to the Nash bargaining solution.

Various solutions have been proposed based on slightly different assumptions about what properties are desired for the final agreement point.

John Nash proposed^{[6]} that a solution should satisfy certain axioms:

- Invariant to affine transformations or Invariant to equivalent utility representations
- Pareto optimality
- Independence of irrelevant alternatives
- Symmetry

Nash proved that the solutions satisfying these axioms are exactly the points in which maximize the following expression:

where *u* and *v* are the utility functions of Player 1 and Player 2, respectively, and d is a disagreement outcome. That is, players act as if they seek to maximize , where and , are the status quo utilities (the utility obtained if one decides not to bargain with the other player). The product of the two excess utilities is generally referred to as the *Nash product*. Intuitively, the solution consists of each player getting their status quo payoff (i.e., noncooperative payoff) in addition to a share of the benefits occurring from cooperation.^{[7]}^{:15–16}

Independence of Irrelevant Alternatives can be substituted with a Resource monotonicity axiom. This was demonstrated by Ehud Kalai and Meir Smorodinsky.^{[8]} This leads to the so-called *Kalai–Smorodinsky bargaining solution*: it is the point which maintains the ratios of maximal gains. In other words, if we normalize the disagreement point to (0,0) and player 1 can receive a maximum of with player 2's help (and vice versa for ), then the Kalai–Smorodinsky bargaining solution would yield the point on the Pareto frontier such that .

The egalitarian bargaining solution, introduced by Ehud Kalai,^{[9]} is a third solution which drops the condition of scale invariance while including both the axiom of Independence of irrelevant alternatives, and the axiom of resource monotonicity. It is the solution which attempts to grant equal gain to both parties. In other words, it is the point which maximizes the minimum payoff among players. Kalai notes that this solution is closely related to the egalitarian ideas of John Rawls.

Name | Pareto-optimality | Symmetry | Scale-invariance | Irrelevant-independence | Resource-monotonicity | Principle |
---|---|---|---|---|---|---|

Nash (1950) | Maximizing the product of surplus utilities | |||||

Kalai-Smorodinsky (1975) | Equalizing the ratios of maximal gains | |||||

Kalai (1977) | Maximizing the minimum of surplus utilities |

A series of experimental studies^{[10]} found no consistent support for any of the bargaining models. Although some participants reached results similar to those of the models, others did not, focusing instead on conceptually easy solutions beneficial to both parties. The Nash equilibrium was the most common agreement (mode), but the average (mean) agreement was closer to a point based on expected utility.^{[11]} In real-world negotiations, participants often first search for a general bargaining formula, and then only work out the details of such an arrangement, thus precluding the disagreement point and instead moving the focal point to the worst possible agreement.

Kenneth Binmore has used the Nash bargaining game to explain the emergence of human attitudes toward distributive justice.^{[12]}^{[13]} He primarily uses evolutionary game theory to explain how individuals come to believe that proposing a 50–50 split is the only just solution to the Nash bargaining game. Herbert Gintis supports a similar theory, holding that humans have evolved to a predisposition for strong reciprocity but do not necessarily make decisions based on direct consideration of utility.^{[14]}

Some economists have studied the effects of risk aversion on the bargaining solution. Compare two similar bargaining problems A and B, where the feasible space and the utility of player 1 remain fixed, but the utility of player 2 is different: player 2 is more risk-averse in A than in B. Then, the payoff of player 2 in the Nash bargaining solution is smaller in A than in B.^{[15]}^{:303–304} However, this is true only if the outcome itself is certain; if the outcome is risky, then a risk-averse player may get a better deal as proved by Alvin E. Roth and Uriel Rothblum^{[16]}

- ↑ Walker, Paul (2005). "History of Game Theory". Archived from the original on 2000-08-15. Retrieved 2008-05-03.
- ↑ Zeuthen, Frederik (1930).
*Problems of Monopoly and Economic Warfare*. - 1 2 Nash, John (1953-01-01). "Two-Person Cooperative Games".
*Econometrica*.**21**(1): 128–140. doi:10.2307/1906951. JSTOR 1906951. - 1 2 Rubinstein, Ariel (1982-01-01). "Perfect Equilibrium in a Bargaining Model".
*Econometrica*.**50**(1): 97–109. CiteSeerX 10.1.1.295.1434. doi:10.2307/1912531. JSTOR 1912531. - ↑ Abhinay Muthoo "Bargaining Theory with Applications", Cambridge University Press, 1999.
- ↑ Nash, John (1950). "The Bargaining Problem".
*Econometrica*.**18**(2): 155–162. doi:10.2307/1907266. JSTOR 1907266. - ↑ Muthoo, Abhinay (1999).
*Bargaining theory with applications*. Cambridge University Press. - ↑ Kalai, Ehud & Smorodinsky, Meir (1975). "Other solutions to Nash's bargaining problem".
*Econometrica*.**43**(3): 513–518. doi:10.2307/1914280. JSTOR 1914280. - ↑ Kalai, Ehud (1977). "Proportional solutions to bargaining situations: Intertemporal utility comparisons" (PDF).
*Econometrica*.**45**(7): 1623–1630. doi:10.2307/1913954. JSTOR 1913954. - ↑ Schellenberg, James A. (1 January 1990). "'Solving' the Bargaining Problem" (PDF).
*Mid-American Review of Sociology*.**14**(1/2): 77–88. Retrieved 28 January 2017. - ↑ Felsenthal, D. S.; Diskin, A. (1982). "The Bargaining Problem Revisited: Minimum Utility Point, Restricted Monotonicity Axiom, and the Mean as an Estimate of Expected Utility".
*Journal of Conflict Resolution*.**26**(4): 664–691. doi:10.1177/0022002782026004005. - ↑ Binmore, Kenneth (1998).
*Game Theory and the Social Contract Volume 2: Just Playing*. Cambridge: MIT Press. ISBN 978-0-262-02444-0. - ↑ Binmore, Kenneth (2005).
*Natural Justice*. New York: Oxford University Press. ISBN 978-0-19-517811-1. - ↑ Gintis, H. (11 August 2016). "Behavioral ethics meets natural justice".
*Politics, Philosophy & Economics*.**5**(1): 5–32. doi:10.1177/1470594x06060617. - ↑ Osborne, Martin (1994).
*A Course in Game Theory*. MIT Press. ISBN 978-0-262-15041-5. - ↑ Roth, Alvin E.; Rothblum, Uriel G. (1982). "Risk Aversion and Nash's Solution for Bargaining Games with Risky Outcomes".
*Econometrica*.**50**(3): 639. doi:10.2307/1912605. JSTOR 1912605.

- Binmore, K.; Rubinstein, A.; Wolinsky, A. (1986). "The Nash Bargaining Solution in Economic Modelling".
*RAND Journal of Economics*.**17**(2): 176–188. doi:10.2307/2555382. JSTOR 2555382.

© 2019 raptorfind.com. Imprint, All rights reserved.