This is a video about (170705) 주간 아이돌 310회 블랙핑크 (BLACKPINK) - Weekly idol ep 310 BLACKPINK
主要支援:已於2009年4月8日到期 延伸支援:已於2014年4月8日到期(仅限Service Pack 3 x86(SP3 x86)及Service Pack 2 x64(SP2 x64)) 新增的功能 移除的功能 版本 开发历史 批評 主题 Windows XP(开发代号:)是微软公司推出供个人电脑使用的操作系统,包括商用及家用的桌上型电脑、笔记本电脑、媒体中心(英语:)和平板电脑等。其RTM版于2001年8月24日发布;零售版于2001年10月25日上市。其名字「」的意思是英文中的「体验」()。Windows ..
Nov 13, 2019- Explore dobdan222's board "교복", followed by 405 people on Pinterest. See more ideas about Asian girl, Korean student and Fashion.
Nov 10, 2019- Explore cutebear36088's board "여고딩", followed by 557 people on Pinterest. See more ideas about School looks, Fashion and School uniform.
Republika obeh narodov Habsburška monarhija Bavarska Saška Franconia Švabska Zaporoški kozaki Velika vojvodina Toskana Drugo obleganje Dunaja je potekalo leta 1683; pričelo se je 14. julija 1683, ko je Osmanski imperij obkolil Dunaj in končalo 11. septembra ..
Robert Henry Goldsborough (January 4, 1779 – October 5, 1836) was an American politician from Talbot County, Maryland. Goldsborough was born at "Myrtle Grove" near Easton, Maryland. He was educated by private tutors and graduated from St. John's College in ..
Anabolic steroids, also known more properly as anabolic–androgenic steroids (AAS), are steroidal androgens that include natural androgens like testosterone as well as synthetic androgens that are structurally related and have similar effects to testosterone. ..
In game theory, Aumann's agreement theorem is a theorem which demonstrates that rational agents with common knowledge of each other's beliefs cannot agree to disagree. It was first formulated in the 1976 paper titled "Agreeing to Disagree" by Robert Aumann, after whom the theorem is named.
Aumann's agreement theorem says that two people acting rationally (in a certain precise sense) and with common knowledge of each other's beliefs cannot agree to disagree. More specifically, if two people are genuine Bayesian rationalists with common priors, and if they each have common knowledge of their individual posterior probabilities, then their posteriors must be equal.[1] This theorem holds even if the people's individual posteriors are based on different observed information about the world. Simply knowing that another agent observed some information and came to their respective conclusion will force each to revise their beliefs, resulting eventually in total agreement on the correct posterior. Thus, two rational Bayesian agents with the same priors and who know each other's posteriors will have to agree.
A question arises whether such an agreement can be reached in a reasonable time and, from a mathematical perspective, whether this can be done efficiently. Scott Aaronson has shown that this is indeed the case.[2] Of course, the assumption of common priors is a rather strong one and may not hold in practice. However, Robin Hanson has presented an argument that Bayesians who agree about the processes that gave rise to their priors (e.g., genetic and environmental influences) should, if they adhere to a certain pre-rationality condition, have common priors.[3]
Studying the same issue from a different perspective, a research paper by Ziv Hellman considers what happens if priors are not common. The paper presents a way to measure how distant priors are from being common. If this distance is ε then, under common knowledge, disagreement on events is always bounded from above by ε. When ε goes to zero, Aumann's original agreement theorem is recapitulated.[4] In a 2013 paper, Joseph Halpern and Willemien Kets argued that "players can agree to disagree in the presence of ambiguity, even if there is a common prior, but that allowing for ambiguity is more restrictive than assuming heterogeneous priors."[5]